Ribosomen: Baumeister des Lebens

(05.05.2005) Wissenschaftler am Max-Planck-Institut für molekulare Genetik in Berlin erzielen wichtige Durchbrüche bei der Aufklärung der Struktur der Ribosomen

Gleich zwei wichtige Erfolge kann eine Gruppe von Wissenschaftlern am Berliner Max-Planck-Institut für molekulare Genetik vermelden. Gemeinsam mit einer amerikanischen Partnergruppe konnten die Forscher unter der Leitung von Dr. Paola Fucini die dreidimensionale Struktur einer wichtigen Bindungsstelle des Ribosoms einschließlich eines daran gebundenen Proteins vorstellen.

In der neuesten Ausgabe der renommierten Fachzeitschrift Molecular Cell beschreiben sie die genaue Bindung der hochkonservierten GTPase Era an die kleine Untereinheit des Ribosoms, wodurch die letzten Schritte bei der Zusammensetzung der ribosomalen Untereinheiten für die Synthese von Proteinen aktiviert werden (Mol Cell 18:319-329, 2005).

Schon Anfang des Jahres gelang es den Wissenschaftlern, die dreidimensionale Struktur der großen Untereinheit des Ribosoms mit daran gebundenem Ribosomen-Recycling-Faktor aufzuklären. Die inzwischen zum Patent eingereichte Struktur eröffnet den Weg für die gezielte Entwicklung einer neuen Klasse von Antibiotika (EMBO J 24(2):251-60, 2005).

Proteine bilden die wichtigste Stoffgruppe aller lebenden Organismen. Neben vielem anderen dienen sie als Gerüstsubstanzen zum Aufbau von Geweben und Organen, ermöglichen Bewegungen und sind Träger der Immunabwehr. Alle Organismen "bauen" ihre Proteine in einer universal verbreiteten Zellfabrik, den Ribosomen.

Diese bestehen aus einer großen und einer kleinen Untereinheit, welche - anders als bei einer immer gleich bleibenden Fabrik - erst im Verlauf des Syntheseprozesses zu funktionsfähigen Ribosomen zusammengesetzt werden. Nach der Fertigstellung eines Proteins löst sich dieses vom Ribosom, das anschließend erneut in seine Einzelteile zerfällt. Dieser Recycling-Prozess ist von universeller Bedeutung für das Leben jedes Organismus, die Details sind bislang jedoch immer noch wenig verstanden.

Wissenschaftlern am Max-Planck-Institut für molekulare Genetik in Berlin unter der Leitung von Dr. Paola Fucini ist es jetzt gemeinsam mit Partnern am New York State Health Dept. in Albany, USA, gelungen, mittels Kryo-Elektronenmikroskopie eine Bindungsstelle des Ribosoms für ein weit verbreitetes Protein, die hochkonservierte GTPase Era (E. coli Ras-like protein), darzustellen.

In der neuesten Ausgabe der Fachzeitschrift Molecular Cell berichten die Wissenschaftler, dass Era an eine funktionell bedeutsame Stelle der kleinen Untereinheit des Ribosoms bindet, wo es die letzten Schritte bei der Assemblierung (Zusammensetzung) von funktionell aktiven Untereinheiten ermöglicht. Trotz langjähriger Forschung ist der genaue Ablauf der Assemblierung der ribosomalen Untereinheiten noch weitgehend unbekannt, die jetzt veröffentlichte kryo-elektronenmikroskopische Struktur des Era-Ribosomenkomplexes stellt die erste direkte Visualisierung einer für den Assemblierungsprozess bedeutsamen Bindungsstelle überhaupt dar.

Vergleichbare Proteine kommen auch bei Säugern vor, die Forscher gehen daher davon aus, dass die Rolle von Era bei der Assemblierung des Ribosoms universell auf alle anderen Organismen übertragen werden kann.

Einen weiteren Durchbruch konnten die Berliner Wissenschaftler bereits Anfang des Jahres vermelden. Mit Hilfe der Röntgenstrahl-Kristallographie ist es ihnen gelungen, die dreidimensionale Struktur der großen Untereinheit des Ribosoms des Bakteriums Escherichia coli einschließlich eines an sie gebundenen ribosomalen Recycling-Faktors (RRF) aufzuklären. In der Zeitschrift EMBO Journal beschreiben sie die genauen Änderungen in der Gestalt des Ribosoms, die durch die Bindung des RRF bewirkt werden und dadurch das Auseinanderfallen der ribosomalen Untereinheiten ermöglichen. Der untersuchte Ribosomen-Recycling-Faktor ist jedoch nur essentiell für die Funktion bakterieller Ribosomen, bei Wirbeltieren einschließlich des Menschen kommt er nicht vor. Dies macht ihn zu einem attraktiven Ziel für die Entwicklung neuer Antibiotika, welche gezielt die bakteriellen Ribosomen angreifen könnten, ohne den infizierten Wirt zu schädigen. Dank der jetzt vorliegenden hochgenauen Struktur des Ribosomen-RRF-Komplexes ist der Weg frei für eine gezielte Entwicklung entsprechender Wirkstoffe.

Publikationen:

Wilson DN, Schluenzen F, Harms JM, Yoshida T, Ohkubo T, Albrecht R, Buerger J, Kobayashi Y, Fucini P (2005). X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J 24(2):251-60, 26.01.2005. Epub 2004 Dec 23

Sharma MR, Barat C, Wilson DN, Booth TM, Kawazoe M, Hori-Takemoto C, Shirouzu M, Yokoyama S, Fucini P, Agrawal RK (2005). Interaction of Era with the 30S Ribosomal Subunit: Implications for 30S Subunit Assembly. Molecular Cell 18:319-329, 29.04.2005

weitere Meldungen

Mycotoxin Research

Mycotoxin Research erscheint im Bereich Life Sciences bei Springer

Die Gesellschaft für Mykotoxinforschung e.V. geht künftig gemeinsame Wege mit Springer in der Veröffentlichung ihrer wissenschaftlichen Fachzeitschrift Mycotoxin Research. Das offizielle Fachorgan der Gesellschaft richtet sich an Wissenschaftler und Praktizierende in der Nahrungsmittelherstellung, Veterinärmedizin und Mykologie
Weiterlesen

Evolutionsbiologen fragen danach, welchen Nutzen eine derart hohe Individualität haben kann; Bildquelle: Max-Planck-Institut für Ornithologie / Wolfgang Forstmeier

Vom Vorteil, anders zu sein

Wissenschaftler suchen nach dem evolutionären Wert individueller Einzigartigkeit
Weiterlesen

Neu: Molecular Systems Biology – a first in systems biology publishing

The European Molecular Biology Organization (EMBO) and Nature Publishing Group (NPG) announce the launch of Molecular Systems Biology
Weiterlesen

Kurzmeldungen

Universtitäten

Neuerscheinungen

09.10.