Wie die Hundezucht die Form und die Größe des Hundegehirns verändert?

(05.03.2018) Die Domestizierung und gezielte Zucht von Haushunden hat ihre Kopfform verschiedentlich verändert. Umbildungen führen bei einigen Rassen zum Beispiel zu verengten Atemwegen. Wie sie sich aber auf das Gehirn auswirken, war bisher nicht systematisch analysierbar.

Veterinärmedizinern der Universität Leipzig ist dies nun zusammen mit einem internationalen Team gelungen. Sie können Gehirnareale in magnetresonanztomographischen Aufnahmen (MRT) automatisch bestimmen - und mit ihrem "digitalen Gehirnatlas" auch Lage, Form und Größe des Gehirns von Hunderassen vergleichend untersuchen.


Lage verschiedener Gehirnareale im Hund: 3-Dimensionale Rekonstruktion der Haut und des Knochens aus dem MRT eines Beagles und die Projektion des Gehirnatlas

Ihre Ergebnisse hat die Forschergruppe kürzlich im renommierten Journal "Neuroimage" publiziert.

Der Atlas ermöglicht es, verschiedene Areale im Gehirn der Hunde zu vermessen. Insgesamt 64 Tiere unterschiedlicher Rassen haben die Forscher analysiert. Die Ergebnisse repräsentieren verschiedene Phänotypen (Erscheinungsbilder) und sind damit geeignet, verschiedene Rassen reproduzierbar zu untersuchen.

"Wir konnten zeigen, dass in einer homogenen Hunderasse der Frontallappen im Gehirn, der sowohl Bewegung, als auch das Sozialverhalten steuert, von allen untersuchten Gehirnarealen am stärksten variiert.

Demgegenüber schwankt in einer heterogenen klinischen Hundepopulation die Größe des Balkens (Corpus callosum), der den Informationsaustausch zwischen linker und rechter Gehirnhälfte ermöglicht, am stärksten", sagt Dr. Björn Nitzsche vom Veterinär-Anatomischen Institut der Universität Leipzig, der das Forschungsprojekt leitet.

Insgesamt sei die Varianz der Größenverhältnisse in einer gemischtrassigen Hundepopulation um mehr als das zehnfache größer als nach einer reinrassigen Züchtung.

"Trotz Gemeinsamkeiten bei wichtigen neurofunktionellen und -anatomischen Eigenschaften von Mensch und Hund wissen wir vergleichsweise nur sehr wenig über die Größe, Variabilität und Funktion des Gehirns unserer Hunderassen", erläutert Prof. Dr. Johannes Seeger, ebenfalls Forscher am Veterinär-Anatomischen Institut.

Methoden aus den rechengestützten Neurowissenschaften der Humanmedizin ermöglichten den Wissenschaftlern nun eine objektive und nachvollziehbare Analyse verschiedener Hunde-Hirnareale anhand von MRT-Aufnahmen.

Dafür entwickelten sie auch Wege der automatischen Verarbeitung der Bilder.

"Wir möchten mit unseren Forschungen dazu beitragen, die Konsequenzen der Jahrtausende alten selektiven Hundezucht objektiv und reproduzierbar zu untersuchen", erläutert der Leiter der Neurologie der Kleintierklinik der Universität Leipzig, Dr. Thomas Flegel. Der Gehirnatlas ist daher für alle interessierten Wissenschaftler frei verfügbar.

"Unsere Methode hat das Potenzial, wesentliche Fragen über die Einflüsse selektiver Zucht auf das Gehirn verschiedener Rassen nachvollziehbar zu beantworten und liefert darüber hinaus zukünftig auch die Möglichkeit, funktionelle Fragestellungen zum Verhalten reproduzierbar zu gestalten", prognostiziert Nitzsche.

Er arbeitet in seinem Forschungsprojekt mit Veterinärmedizinern, translationalen und grundlagenorientierten Wissenschaftlern zusammen.

Neben veterinärmedizinischen Klinikern und Anatomen der Universitäten Leipzig sind auch Wissenschaftler der Universitäten Gießen, Wien (Österreich) und Bern (Schweiz) beteiligt.

Gemeinsam mit Matthew Gounis, Professor der Abteilung für Radiologie und Leiter des New England Center for Stroke Research, Massachusetts Medical School in Worcester Massachusetts (USA) gelang es ihm, die Gehirnmorphologie von reinrassigen Beagles mit denen verschiedener Hunderassen zu vergleichen.

Ihre Ergebnisse hat die Forschergruppe kürzlich im renommierten Journal "Neuroimage" publiziert.

Publikation

Nitzsche, B, Boltze, J, Ludewig, E, Flegel, T, Schmidt, MJ, Seeger, J, Barthel, H, Brooks, OW, Gounis, MJ, Stoffel, MH, and Schulze, S.: A stereotaxic breed-averaged, symmetric T2w canine brain atlas including detailed morphological and volumetrical data sets. NeuroImage.2018.pii: S1053-8119(18)30066-1.
DOI: 10.1016/j.neuroimage.2018.01.066



Weitere Meldungen

Ein Schnitt durch den Haiwirbel zeigt Wachstumsringe, ähnlich denen in Baumstämmen.; Bildquelle: Daniel Erny/Universitätsklinikum Freiburg

Gehirn des weltweit ältesten Wirbeltieres untersucht

Detaillierte Untersuchungen des ältesten Gehirns können neue Erkenntnisse für altersbedingte Krankheiten des Gehirns ermöglichen. Studie im Fachmagazin Acta Neuropathologica erschienen
Weiterlesen

Ruhr-Universität Bochum

Vogelhirne weisen eine überraschende Organisation auf

Manche Vögel können erstaunliche kognitive Leistungen vollbringen – dabei erscheint ihr Gehirn im Vergleich mit dem von Säugetieren ziemlich unorganisiert
Weiterlesen

Verschiedene Nervensignale im Stirnlappen der Brillenblattnasen-Fledermaus Carollia perspicillata (links) gehen Kommunikationslauten (oben) und Lauten zur Echo-Ortung (unten) voran.; Bildquelle: Julio C. Hechavarria, Goethe Universität Frankfurt

Rhythmische Nervensignale bestimmen Laute von Fledermäusen

Ein bestimmter neuronaler Schaltkreis im Gehirn kontrolliert bei Fledermäusen die Lautäußerungen der Tiere. Dies haben jetzt Biologen der Goethe-Universität Frankfurt herausgefunden
Weiterlesen

Menschenaffen wie diese Bonobos haben wie die Menschen grosse Hirne und können daher sehr geschickte Fingerfertigkeiten erlernen.; Bildquelle: Sandra Heldstab/Zoologisch-Botanischer Garten Wilhelma, Stuttgart

Affenarten mit grossen Gehirnen beherrschen schwierigere Handgriffe als solche mit kleinen Hirnen

Doch das Erlernen feinmotorischer Fähigkeiten wie der Werkzeuggebrauch kann dauern: am meisten Zeit beansprucht es bei Menschen
Weiterlesen

Mikroskopische Aufnahme eines Hirnhälften-Schnitts eines 101 Tage alten ARHGAP11B-transgenen Weißbüschelaffen-Fötus. Die Zellkerne sind weiß dargestellt. Pfeile zeigen einen Sulcus und einen Gyrus an.; Bildquelle: Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG)

Menschliches Gehirngrößen-Gen vergrößert auch Gehirn von Affen

Dresdner und japanische Forscher zeigen, dass ein menschenspezifisches Gen einen größeren Neokortex beim Weißbüschelaffen hervorruft
Weiterlesen

Prof. Dr. Peter Hier; Bildquelle: Ingo Rappers / HIH

Affen reagieren auf Animationen im Hollywood-Stil

Rhesusaffen akzeptieren einen naturalistisch aussehenden Affen-Avatar als Artgenossen und begegnen ihm mit ihrer artspezifischen Mimik. Unrealistische Avatare ignorieren sie dagegen
Weiterlesen

Max-Planck-Institut für Kognitions- und Neurowissenschaften

Affen kommunizieren, Menschen haben Sprache

Obwohl die Tiere hochkomplexe Fähigkeiten haben, Sprache können sie nicht. Welche Hirnstrukturen und Gene beim Menschen den Unterschied machen, will Angela D. Friederici vom MPI CBS herausfinden
Weiterlesen

Alexander Hecker M.Sc. und Prof. Dr. Stefan Schuster, Lehrstuhl für Tierphysiologie an der Universität Bayreuth.; Bildquelle: Christian Wißler

Bayreuther Biologen ergründen die Rolle der Mauthnerzellen in tierischen Gehirnen

Die Gehirne der meisten Fisch- und Amphibienarten enthalten ein Paar auffällig großer Nervenzellen. Es sind die größten Zellen, die in tierischen Gehirnen vorkommen
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen

09.10.