Mobilität der Bakterien als Angriffspunkt zur Krankheitsbekämpfung

(27.11.2014) Sich zu bewegen, hilft vielen Bakterien, in bestimmte Nischen zu gelangen oder sich aus feindlichen Umgebungen zurückzuziehen. Das Bakterium Mycoplasma gallisepticum, ein Krankheitserreger bei Geflügel, kann auf glatten Oberflächen gleiten. WissenschafterInnen der Vetmeduni Vienna fanden nun heraus, welche Proteine für diesen Gleitmechanismus verantwortlich sind.

Das Gleiten zu unterbinden, könnte die Bakterien weniger infektiös machen, aber auch helfen, einen Impfstoff gegen den Erreger zu entwickeln. Die Ergebnisse wurden im Fachmagazin Veterinary Research veröffentlicht.

Mycoplasma gallisepticum verursacht chronische Erkrankungen der Atemwege bei Vögeln. Vor allem Hühner- und Putenherden sind von der Tierseuche betroffen.

Besonders in Kombination mit weiteren Infektionen ist der Keim lebensbedrohlich für die Tiere. EU-weit müssen Geflügelzuchtbetriebe nachweislich frei von Mycoplasma gallisepticum sein, da sonst die Schließung droht.

Mycoplasma gallisepticum ist mit dem Humankeim Mycoplasma pneumoniae verwandt, der bei Menschen Bronchitis und Lungenentzündungen verursacht. Mycoplasmen gehören zu den kleinsten Mikroorganismen überhaupt.

In der Fachwelt spricht man sogar von degenerierten Bakterien, da sie einen Großteil ihres Erbmaterials im Laufe der Evolution über Bord geworfen haben und somit das kleinste bakterielle Genom besitzen.

Gerade das aber macht sie zu effizient angepassten Krankheitserregern bei Mensch und Tier.

Mindestens drei Proteine für Gleitmechanismus verantwortlich

Dass M. gallisepticum gleitet, ist seit den 1960er-Jahren bekannt. Wie der Mechanismus aber genau funktioniert und welche Proteine das Gleiten ermöglichen, war bislang unklar. Erstautorin Ivana Indikova und Studienleiter Michael Szostak vom Institut für Mikrobiologie der Vetmeduni Vienna haben nun herausgefunden, dass die Proteine GapA, CrmA und Mgc2 das Bakterium bewegen.

„Fehlt dem Bakterium eines dieser drei Proteine, kann es sich nicht mehr eigenständig bewegen. Uns interessiert, ob unbewegliche Mycoplasmen weniger infektiös sind. Wäre das der Fall, könnten wir gezielt Mobilitätsgene ausschalten und so den Keim ungefährlich machen“, erklärt Szostak.

Die Gleitfähigkeit könnte sogar dazu beitragen, dass Mycoplasmen in Körperzellen eindringen und sie durchqueren können. Damit würden sie sich einerseits vor dem Immunsystem in Sicherheit bringen und andererseits die Infektion effizient über den Wirtskörper ausbreiten.

Auch die Entwicklung eines Impfstoffes schwebt den ExpertInnen vor. „Eine unbeweglicher und nicht krankmachender Keim könnte Basis für einen neuen Impfstoff sein, den das Immunsystem zwar erkennt und bekämpft, der aber keine Krankheit im Organismus verursacht“, erklärt Szostak.

Bewegen sich gleitende Mycoplasmen gegen den Strom?

Die Fähigkeit sich zu bewegen, bringt den Erregern also gewisse Vorteile. Auf welche Reize M. gallisepticum beim Gleiten reagiert, ist aber noch unbekannt. Szostak vermutet: „Die meisten Mycoplasmen können nicht gleiten.

Die gleitenden Arten wurden bisher nur im Atemtrakt und Genitaltrakt nachgewiesen. Also überall dort, wo es einen gerichteten Schleimfluss gibt. Wir glauben, dass die gleitenden Bakterien sich möglicherweise gegen diesen Strom bewegen, um tieferliegende Körperregionen zu erreichen. Wir planen gerade weitere Experimente, um dieser Frage nachzugehen.“ 

Publikation

Der Artikel „First identification of proteins involved in motility of Mycoplasma gallisepticum” von Ivana Indikova, Martin Vronka and Michael P. Szostak wurde im Journal Veterinary Research veröffentlicht. DOI: 10.1186/s13567-014-0099-2 http://www.veterinaryresearch.org/content/45/1/99


Artikel kommentieren

Weitere Meldungen

Eberhard Karls Universität Tübingen

Wie Bakterien eine Behandlung mit Antibiotika im Schlaf aussitzen

Wissenschaftler der Universität Tübingen untersuchen die Grundlagen eines Therapieversagens, das nicht auf Resistenzen beruht
Weiterlesen

LMU

LMU-Forscher entschlüsseln den physikalischen Mechanismus, mit dem sich ein Krankheitserreger an sein Zielmolekül bindet

Bakterien haben ausgeklügelte Strategien entwickelt, um sich in ihren Wirten festzusetzen und zu vermehren.
Weiterlesen

Die Tübinger Geowissenschaftlerin Julia Kleinteich nimmt Süßwasserproben in der Nähe der britischen Forschungsstation Rothera in der Antarktis.; Bildquelle: Daniel Farinotti

In Arktis und Antarktis leben die gleichen Bakterien

Obwohl Arktis und Antarktis an entgegengesetzten Polen der Erde liegen, weisen sie eine ähnliche Diversität an Bakterien und Kleinstlebewesen auf
Weiterlesen

Deutsches Zentrum für Infektionsforschung

Antibiotikaresistenzen: Ein multiresistenter Escherichia coli-Stamm auf dem Vormarsch

DZIF-Wissenschaftler an der Universität Gießen fanden einen Escherichia coli-Stamm, der sich seit 2010 in Deutschland rasant ausbreitet und gegen mehrere Antibiotika gleichzeitig unempfindlich ist
Weiterlesen

Mikroorganismen wie diese Bakterien auf der Haut eines Kleinkrebses sind die ständigen Begleiter von Mensch und Tier. Forscher der Universität Basel konnten nun zeigen, dass mikrobielle Gemeinschaften von Arten dominiert werden, die auf ihren Wi; Bildquelle: Universität Basel

Mikrobielle Begleiter von Mensch und Tier sind hoch spezialisiert

Menschen und Tiere sind nie allein. Jeder Mensch beherbergt über zweitausend Arten von Bakterien, die meisten davon besiedeln den Körper erst nach der Geburt. Generalisten unter den Bakterien, so sollte man meinen, hätten dabei einen Vorteil
Weiterlesen

Bakterien (im Hintergrund). Infrarotspektrum (im Vordergrund); Bildquelle: Tom Grunert/Vetmeduni Vienna

Forschende machen Einfluss des Wirts auf Bakterienstoffwechsel sichtbar

Bakterien passen sich ihrer Umgebung an. Diese Anpassungsfähigkeit macht die Keime zu Überlebenskünstlern in ihrem Wirt. Forschende der Vetmeduni Vienna haben nun gezeigt, dass sich ein und derselbe Bakterienstamm in verschiedenen Mäusen unterschiedlich entwickelt
Weiterlesen

Infektion mit Chlamydien; Bildquelle: C. Siegl et al., 2014

Chlamydien: Trickreiche Invasoren

Chlamydien sind die Auslöser einer Reihe schwerer Krankheiten. Gleichzeitig sind die Bakterien auf die Unterstützung der von ihnen befallenen Zellen angewiesen, um überleben zu können
Weiterlesen

Helmholtz Zentrum München

Antibiotikaeinsatz in der Tierhaltung erhöht die Häufigkeit humanpathogener Bakterien in der Umwelt

Wissenschaftler des Helmholtz Zentrums München haben herausgefunden, dass Antibiotika, die in der Tierhaltung eingesetzt werden und über die Gülle in die Umwelt gelangen, die Zusammensetzung von Bakterien in Böden beeinflussen
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen