Forscher steuern Protein zur Wärmeerzeugung und Fettverbrennung im Körper

(19.11.2013) Wärme wird durch Muskelbewegung erzeugt. Es gibt jedoch noch eine zweite Möglichkeit. Ein Protein im braunen Fettgewebe ermöglicht Wärmeerzeugung, auch ohne Muskelaktivität. Das so genannte UCP1 ermöglicht Babies und winterschlafenden Tieren sich ohne Zittern warm zu halten.

Ein Forscherteam der Veterinärmedizinischen Universität Wien (Vetmeduni Vienna) hat nun festgestellt, dass eine spezielle chemische Verbindung, ein Aldehyd, unter speziellen Bedingungen das UCP1  aktivieren und so auch die Fettverbrennung ankurbeln kann. Die Ergebnisse könnten für die Behandlung der Fettleibigkeit genutzt werden. Die Daten wurden im Fachjournal Plos One veröffentlicht.


An der 3-D Struktur des Proteins UCP1 können Bindungsstellen für Moleküle gefunden werden
Das Entkopplerprotein 1 (UCP1), auch früher Thermogenin genannt, kommt ausschließlich im braunen Fettgewebe vor. Bis vor einigen Jahren dachte man, dass nur Babies und Winterschläfer dieses Fettgewebe besitzen. Seit man aber auch in Erwachsenen kleine Inseln von braunem Fettgewebe gefunden hat, wird UCP1 für die Bekämpfung der Fettleibigkeit interessant.

„Fänden wir also heraus, wie dieses Protein reguliert werden kann, dann könnten wir eventuell auch die Fettverbrennung ankurbeln“, erklärt die Expertin für Membranbiophysik Prof. Elena Pohl von der Abteilung für Physiologie und Biophysik an der Vetmeduni Vienna.

UCP1 verbraucht Energie

Ganz genau gesagt steckt das Entkopplerprotein 1 in der Membran von Mitochondrien, den Energiekraftwerken, die sich in all unseren Körperzellen befinden. Besonders viele Mitochondrien gibt es in den Zellen, die viel Energie benötigen – beispielsweise die Muskelzellen.

Im braunen Fettgewebe - es gibt auch weißes Fettgewebe, das den Hauptanteil unseres Körperfetts ausmacht - befinden sich auch sehr viele Mitochondrien. Sie sind für die Braunfärbung des Gewebes verantwortlich. UCP1 in den Mitochondrien des braunen Fettgewebes transportiert elektrisch geladene Teilchen in der Zelle und verbraucht („entkoppelt“) so Energie , die normalerweise  für die herkömmliche Energieerzeugung in den Zellen verwendet wird.

Dabei wird Wärme produziert. Mäuse, in denen man UCP1 ausgeschalten hat, frieren und winterschlafende Tiere würden ohne das Protein den Winter nicht überleben.

UCP1 im Körper regulieren

Die Forscher der Vetmeduni wollen seit einigen Jahren wissen, wie man UCP1 regulieren kann. In einem von FWF geförderten Projekt  testeten sie, neben Fettsäuren, verschiedene Substanzen, die UCP1 aktivieren können.

Eine der Substanzen ist der reaktive Aldehyd  4-hydroxy-2-nonenal (HNE). Mit einem selbst entwickelten System untersuchten die Forscher um Elena Pohl das Protein UCP1, indem sie es in eine künstlich hergestellte Doppel-Lipidschicht, die natürlichen Zellmembranen entspricht, einbauten. Bei einer Änderung der elektrischen Leitfähigkeit der Membran können die Biophysiker Rückschlüsse auf  die Aktivierung von UCP1 ziehen.

Die Forscher untersuchten nun die Aktivität von UCP1 während sie HNE auf die Membran tropften. Sie fanden heraus, dass sich UCP1 um ein vielfaches stärker aktivieren lässt, wenn man HNE mit Fettsäuren kombiniert. HNE alleine aktiviert UCP1 nur wenig.

„In diesem Modell sind alle beteiligten „Spieler“ bekannt und man kann eindeutig feststellen, ob die untersuchte Substanz das Protein direkt beeinflusst. Diese  Entdeckung könnte in Zukunft zum besseren Verständnis der Mechanismen, die für die Regulierung des Proteins verantwortlich sind, beitragen. Ein Ansatz zur Fettverbrennung im Körper könnte so auch gefunden worden sein“, erläutert Koautorin Olga Jovanovic.

Abbau von freien Radikalen

Reaktive Sauerstoffspezies, dazu gehören auch die freien Radikale, spielen eine wichtige Rolle in vielen biologischen Prozessen. Sie bewirken aber auch Zellschäden und spielen bei der Entstehung verschiedener Erkrankungen wie beispielsweise Krebs, Arteriosklerose oder Alzheimer eine entscheidende Rolle.

Das Forscherteam zeigte in der aktuellen Arbeit auch, dass HNE zusammen mit den Fettsäuren potentiell in der Lage ist, diese schädlichen Formen des Sauerstoffs durch die Senkung des Membranpotentials zu minimieren.

„Mit unserer Arbeit klären wir die molekularen Mechanismen der UCPs weiter auf. Wir werden noch Untersuchungen mit verschiedenen Aldehyden und anderen UCPs machen. Es gibt fünf verschiedene UCPs und ihre Funktionen sind noch nicht restlos geklärt. In weiterer Folge können dann entsprechende Therapien zu verschiedenen Erkrankungen entwickelt werden.“

Die Geschichte eines verwandten Diätmittels

In den 1930er Jahren gab es bereits einmal eine vielversprechende Substanz zur Gewichtsreduktion die ähnlich funktionierte. 2,4-Dinitrophenol wirkte, wie UCP1, als Entkoppler in den Mitochondrien der Zelle und beschleunigte den Stoffwechsel, wenn in entsprechenden Mengen eingenommen, bis zu 50 Prozent. Allerdings kam es in einigen Fällen zu schweren bis tödlichen Nebenwirkungen. Das Medikament wurde in Folge vom Markt genommen. „Wenn es uns gelingt UCP1 gut zu regulieren, geht die Geschichte vielleicht anders aus“, so Pohl.

Die wissenschaftliche Arbeit „Fatty acids are key in 4-hydroxy-2-nonenal-mediated activation of uncoupling proteins 1 and 2“, von Elena A. Malingriaux, Anne Rupprecht, Lars Gille, Olga Jovanovic, Petr Jezek, Martin Jaburek und Elena E. Pohl wurde im Fachjournal Plos One veröffentlicht.
www.plosone.org/article/info:doi/10.1371/journal.pone.0077786


Weitere Meldungen

Gartenschläfer ; Bildquelle: Thomas Suchanek/Vetmeduni

Klimawandel und Winterschlaf: Gartenschläfer reagieren flexibel

Wie wirkt sich der Klimawandel auf Tiere aus, die Winterschlaf halten? In einer experimentellen Versuchsanordnung ging ein Forschungsteam der Veterinärmedizinischen Universität Wien dieser Frage nach
Weiterlesen

Siebenschläfer; Bildquelle: Thomas Suchanek/Vetmeduni

Neue Analyse zeigt: Winterschlaf ist nicht gleich Winterschlaf

Vergleicht man den Winterschlaf verschiedener Tierarten, zeigen sich zwei unterschiedliche Muster. Eine kürzlich veröffentlichte australisch-österreichische Studie unter Leitung der Veterinärmedizinischen Universität Wien untersuchte, wie sich dieser Unterschied auf das Langzeitüberleben der Tiere auswirkt
Weiterlesen

Dr. Petzold, Dr. Thienel (beide LMU Klinikum), Dr. Müller-Reif (MPI Biochemie); Bildquelle: Andreas Steeger/LMU Klinikum Pressestelle

Braunbären in der Winterruhe liefern Hinweise auf Schutzmechanismus gegen Thrombose

Braunbären entwickeln in der Winterruhe trotz wochenlanger Schlafphasen keine Thrombose
Weiterlesen

Vetmeduni

Neues Modell erklärt Winterschlaf nach mathematischen Regeln

Säugetiere halten Winterschlaf, um widrigen Umweltbedingungen zeitweise zu entkommen. Um auf diesem Erklärungsansatz Untersuchungsergebnisse besser vergleichbar zu machen, wurde ein Modell entwickelt, welches die gängige Winterschlaf-Hypothese nach mathematischen Regeln darstellt
Weiterlesen

Bär im Winterschlaf; Bildquelle: Jon A. Arnemo

Bären im Winterschlaf: Fett, aber gesund

Für den Winterschlaf bauen Braunbären große Fettreserven auf, die sie als Energiereserve nutzen. Das hat für die Blutgefäße jedoch keine negativen Folgen, wie eine soeben in „Scientific Reports“ veröffentlichte internationale Studie zeigt
Weiterlesen

Schweizerischer Nationalfonds SNF

Siebenschläfer bereits vor 34 Millionen Jahren im Winterschlaf

Nagetierfossilien lassen vermuten, dass der Winterschlaf bereits vor 34 Millionen Jahren als Überlebensstrategie existierte. Dies zeigt eine Analyse von Forschenden, die der Schweizerische Nationalfonds unterstützt hat
Weiterlesen

Bei Grizzlybären überstehen die Muskeln den Winterschlaf beinahe unbeschadet. Forscher*innen suchen nun nach den Mechanismen, um so auch bettlägerigen Menschen zu helfen.; Bildquelle: AG Gotthardt, MDC

Strategien der Bären gegen Muskelschwund im Winterschlaf

Grizzlybären verbringen viele Monate im Winterschlaf, ohne dass ihre Muskeln unter der fehlenden Bewegung leiden. Wie ihnen das gelingt, berichtet ein Team um Michael Gotthardt im Fachblatt „Scientific Reports“
Weiterlesen

Siebenschläfer; Bildquelle: Claudia Bieber

Telomerschäden durch den Winterschlaf

Viele Säugetiere überleben die kalte Jahreszeit indem sie Winterschlaf halten. Je tiefer die eigene Körpertemperatur, umso mehr Energie können Winterschläfer dabei einsparen
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen