Springende Gene: Parasiten oder Triebkraft der Evolution?

(06.02.2012) Parasiten nutzen die Ressourcen ihres Wirts für ihre eigenen Zwecke. Auch auf der Ebene der DNA gibt es Parasitismus, Genome enthalten bis zu 80 Prozent Fremd-DNA.

Eine Gruppe um Christian Schlötterer von der Vetmeduni Vienna hat nun bei einer Population von Fruchtfliegen das Auftreten solcher parasitärer DNA untersucht und kommt zu überraschenden Ergebnissen, was die damit verbundenen Mechanismen und deren mögliche Rolle in der Evolution betrifft.

Ihre Arbeit erschien in der angesehenen Zeitschrift „PLoS Genetics“.

Fast alle Organismen haben Stücke von DNA in ihrer Erbsubstanz, die - evolutionär gesehen - nicht wirklich zu ihnen gehören. Diese so genannten ‚springenden Gene‘ oder ‚Transposable Elements‘ können ihren Ort innerhalb eines Genoms oder sogar zwischen den Genomen verschiedener Arten wechseln.

Im Allgemeinen belasten sie ihren Wirtsorganismus in irgendeiner Weise. So können sie direkt zu Krankheiten führen, beispielsweise dann, wenn sie sich mitten in ein für das Überleben wichtiges Gen einbauen.

Die Mechanismen, die die Ausbreitung der springenden DNA innerhalb einer Population von Organismen steuern, verstehen Forschende heute schon sehr gut. Viele der damit verbundenen Details sind aber nach wie vor unklar.

Die neuen Arbeiten an der Veterinärmedizinischen Universität Wien (Vetmeduni Vienna) könnten zum besseren Verständnis des zellulären Kampfes zwischen Wirtsorganismus und eindringender Fremd-DNA beitragen.

Verfeinerte Analysen

Robert Kofler und Andrea Betancourt, beide Wissenschaftler am Institut für Populationsgenetik an der Vetmeduni Vienna, haben mit neuartigen Gensequenziertechniken das Auftreten von Transposable Elements innerhalb einer Fruchtfliegenpopulation untersucht.

Ähnliche Analysen gab es zwar schon früher, die Populationsgenetiker an der Vetmeduni Vienna arbeiteten jedoch mit einer Reihe von analytischen Verfeinerungen, um sicher zu gehen, dass sie sowohl bereits bekannte als auch noch unbekannte Stellen im Genom finden, an denen sich fremde DNA eingenistet hat.

So konnten sie erstmals alle Transposable Elements in einer Fliegenpopulation katalogisieren. Zudem analysierten sie, wie oft an möglichen Einbaustellen tatsächlich fremde DNA zu finden ist.

Krieg in der Zelle

Die Ergebnisse waren dramatisch. Die Fruchtfliegen können an sehr vielen Stellen in ihrem Genom potenziell Transposable Elements tragen.

Andererseits fanden die Forschenden relativ wenige Tiere in der untersuchten Population, die tatsächlich fremde DNA an diesen möglichen Orten des Einbaus trugen. Vermutlich passierte der Einbau der Fremd-DNA an diesen Stellen erst vor relativ kurzer Zeit. 

Erst in der Zukunft würde sich herausstellen, ob die eingefügte DNA auch dort bleiben wird. Einige der älteren DNA-Einfügungen waren wiederum im Genom weit verbreitet, dennoch schienen die meisten dieser Stellen in der Population noch nicht endgültig fixiert zu sein.

Anders gesagt, die meisten dieser eingefügten Transposable Elements werden offenbar zunächst irgendwie gereinigt, bevor sie fixer Bestandteil des Genoms der Fliegenpopulation werden.

Schlötterer fasst die Resultate seines Teams so zusammen: „Das Genom ist wie eine Aufzeichnung vergangener Kriege zwischen Wirtsorganismus und parasitischer DNA.

Es gibt Angriffswellen, von denen die meisten erfolgreich abgewehrt werden. Nur eine kleine Zahl von Transposable Elements überlebt und breitet sich dann in der Population aus.“

Keime der biologischen Innovation

Noch überraschender war für die Forschenden, dass sie etwa ein Dutzend Stellen mit Fremd-DNA im Genom der Fruchtfliegen fanden, die öfter auftraten, als sie es von ihrem Alter her vermutet hätten.

Offenbar sind diese Stellen für die Fliegen von irgendeinem Anpassungsnutzen, der dazu führt, dass sie von der Selektion begünstigt werden. Dieser Effekt wurde schon früher bei zwei Genorten entdeckt, und auch Schlötterer fand diese beiden Orte mit seinen Analysen. Jedoch haben die Gene in unmittelbarer Nachbarschaft eine Vielzahl unterschiedlicher Funktionen, deshalb ist der Nutzen dieser Fremd-DNA für die Fliegen nicht klar.

„Vielleicht sollten wir die Transposable Elements überhaupt nicht als Parasiten sehen“, sagt Schlötterer, „Sie gehören möglicherweise zu den Mechanismen, mit denen Organismen ihr genetisches Repertoire vergrößern können. Dieser Mechanismus könnte helfen, die Tiere auf zukünftige Herausforderungen vorzubereiten.“

Der Artikel „Sequencing of Pooled DNA Samples (Pool-Seq) Uncovers Complex Dynamics of Transposable Element Insertions in Drosophila melanogaster“ von Robert Kofler, Andrea J. Betancourt und Christian Schlötterer wurde soeben in der Open Access Zeitschrift „PLoS Genetics“ veröffentlicht.



Artikel kommentieren

Weitere Meldungen

Fast alle modernen, europäischen Hengste haben einen orientalischen Stammvater; Bildquelle: Spanische Hofreitschule

Orientalische Vorfahren:Genetischer Stammbaum europäischer Zuchthengste entschlüsselt

Männliche Tiere vererben ihr Y-Chromosom beinahe unverändert an ihre Söhne weiter. Das ermöglicht die Rekonstruktion der männlichen Abstammungslinie
Weiterlesen

Genetik der Stute beeinflusst Trächtigkeit und Geschlecht der Nachkommen

Genetik der Stute beeinflusst Trächtigkeit und Geschlecht der Nachkommen

Üblicherweise sind es in der Pferdezucht die Hengste, die eine Zuchtlinie begründen. In manchen Fällen sind es aber auch die Stutenlinien, die bei der Zucht die übergeordnete Rolle spielen
Weiterlesen

Dasselbe Transposon, das seit mehr als 60 Jahren in D. melanogaster vorhanden ist, fanden Forschende nun auch in D. simulans; Bildquelle: Markus Riedl/Vetmeduni Vienna

Invasion der genetischen Egoisten - Transposon erobert neuen Fliegenstamm

Transposons sind sogenannte „springende Gene“. Sie können von einer Position im Genom an eine andere „springen“. Warum es Transposons überhaupt gibt, wird kontrovers diskutiert
Weiterlesen

Im Labor leben die Fruchtfliegen in kleinen Glasgefäßen; Bildquelle: Michael Bernkopf/Vetmeduni Vienna

Umwelteinflüsse steuern Genexpression

Das Erscheinungsbild von Organismen wird durch das Zusammenspiel von Umweltfaktoren und Genetik geprägt. PopulationsgenetikerInnen an der Vetmeduni Vienna zeigen in einer aktuellen Studie, dass sich Fruchtfliegen bei einer bestimmten Temperatur in einer Art genetischer Komfortzone befinden
Weiterlesen

Christian Schlötterer ; Bildquelle: Michael Bernkopf / Vetmeduni Vienna

Highspeed-Evolution im Labor – GenetikerInnen evaluieren kostengünstige Genomanalyse

Christian Schlötterer und sein Team vom Institut für Populationsgenetik an der Vetmeduni Vienna erforschen die Genome gesamter Populationen. Die Forschenden wollen wissen, warum sich Individuen voneinander unterscheiden und was diese Unterschiede bewirken
Weiterlesen

Weißbüscheläffchen ; Bildquelle: Hans Novak/Haus des Meeres

Erforschung des Kleinwuchses und von Zwillingsgeburten: Genom der Weißbüschelaffen sequenziert

In einer aktuellen Studie im renommierten Journal Nature Genetics sequenzierte und analysierte ein internationales Forschungsteam, darunter die Bioinformatikerin Carolin Kosiol von der Vetmeduni Vienna, das gesamte Genom des Weißbüschelaffen
Weiterlesen

Die Fruchtfliege Drosophila diente den Forschenden als genetisches Studienobjekt; Bildquelle: Markus Riedl/Vetmeduni Vienna

Spontanes Entstehen und Verschwinden von Genen

Gene werden nicht nur von Generation zu Generation vererbt, es entstehen auch regelmäßig neue Gene. Ihre Anzahl im Organismus müsste also stetig ansteigen. Das ist jedoch nicht der Fall
Weiterlesen

Fruchtfliege (Drosophila melanogaster); Bildquelle: Fotolia, Roblan

Ursprung der Hautfarbe: die Rolle von Gene für die Pigmentproduktion

Die Hautfarbe ist sowohl beim Menschen als auch beim Tier ein individuelles Erkennungsmerkmal. Bei der Fruchtfliege, Drosophila melanogaster, unterscheiden sich Individuen ebenfalls aufgrund ihrer Pigmentierung
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen