Neues über Spinnenseide

(16.11.2013) Spinnenfäden sind leicht, extrem reißfest und stark dehnbar. Das macht sie für industrielle Anwendungen interessant. Forscher vom Biozentrum der Uni Würzburg beschreiben in "Nature Communications" neue Details über die Proteine, aus denen Spinnenfäden bestehen.

Spinnennetze sind aus einem faszinierenden Material gemacht. Die achtbeinigen Krabbeltiere erzeugen es in ihren Spinndrüsen im Hinterleib aus speziellen Proteinen, die sie zu langen Fäden verspinnen.

Das geht extrem schnell: Beim Abseilen zum Beispiel ziehen sie die Seidenfäden mit einer Geschwindigkeit von bis zu einem Meter pro Sekunde aus ihrem Körper heraus.


Eine Gartenkreuzspinne zieht mit den Beinen Spinnenfäden aus den Spinnwarzen an ihrem Hinterleib heraus. Spinnenfäden haben so spannende Eigenschaften, dass man sie gerne technisch nachbauen würde

Beeindruckend ist nicht nur die Geschwindigkeit, mit der Spinnen spinnen – auch das Material selbst ist erstaunlich: „Der Abseilfaden und der Rahmenfaden eines Spinnennetzes sind, bezogen auf ihr geringes Gewicht, widerstandsfähiger als Stahl oder die High-Tech-Faser Kevlar“, erklärt Hannes Neuweiler vom Biozentrum der Universität Würzburg.

Spinnenseide: viele Anwendungen möglich

Kein Wunder also, dass in Forschungslabors und Firmen versucht wird, die Produktion von Spinnenfäden technisch nachzuahmen. Denkbare Anwendungen gibt es genug: neuartige Fasern für Textilien zum Beispiel oder innovative Materialien für den Fahrzeugbau und die Medizintechnik.

Zu den Vorteilen der Spinnenseide gehört auch, dass sie für den menschlichen Organismus sehr gut verträglich und komplett biologisch abbaubar ist.

„Rein technisch klappt die Herstellung von Spinnenseide schon relativ gut. Aber die herausragenden mechanischen Eigenschaften von echten Spinnenfäden werden auf diesem Weg bislang nicht erreicht“, sagt der Biotechnologe Neuweiler.

Er kennt auch einen Grund dafür: Die molekularen Vorgänge beim natürlichen Spinnprozess sind immer noch nicht gut genug verstanden, um sie perfekt nachahmen zu können.

Dynamik des Spinnprozesses gezeigt

Am Spinnprozess fasziniert den Würzburger Forscher vor allem die Geschwindigkeit, mit der sich in der Spinne einzelne Protein-Moleküle zu langen Fäden anordnen.

Diesen Aspekt hat er genauer unter die Lupe genommen – schließlich ist sein Forschungsteam darauf spezialisiert, die Dynamik von Proteinen sichtbar zu machen. Dafür kommen unter anderem spezielle optische Techniken zum Einsatz.

Neuweiler und seine Mitarbeiter haben nun einen bestimmten Abschnitt eines Seidenproteins der Raubspinne (Euprosthenops australis) analysiert. „Dieser Abschnitt ist sehr interessant, weil er die endständigen Bereiche der Proteine, die sich zu Seidenfäden verbinden, miteinander verknüpft“, so Neuweiler.

Salz stört Geschwindigkeit der Protein-Verknüpfung nicht

Das Ergebnis ist im Fachblatt „Nature Communications“ veröffentlicht: Der beobachtete Abschnitt verbindet die Proteine 1000 Mal schneller miteinander als es bei gewöhnlichen Protein-Protein-Wechselwirkungen der Fall ist.

Dazu kommt eine weitere Auffälligkeit: Der Prozess wird durch Salze nicht verlangsamt, was bei solch schnellen Proteinwechselwirkungen sonst immer geschieht.

Die Würzburger Forscher erklären das mit einer elektrischen Besonderheit des untersuchten Proteinabschnitts, nämlich mit ungewöhnlichen Dipol-Wechselwirkungen.

„Bei der Seidenproduktion der Webspinnen scheint die Evolution einen Weg gefunden zu haben, eine stark beschleunigte Assoziation von Proteinen auch in Gegenwart physiologischer Salzkonzentrationen zu ermöglichen“, meint Neuweiler.

Denn am Ende des Spinnkanals der Spinndrüse, wo die Seidenproteinfäden entstehen, sind Salze in unterschiedlicher Zusammensetzung vorhanden, die für den Spinnprozess eine Rolle spielen. Ihre genaue Funktion dort ist bislang wenig verstanden.

Das Phänomen weiter erforschen

Die Würzburger Biotechnologen gehen der „Salzresistenz“ jetzt weiter auf den Grund. Als nächstes wollen sie prüfen, ob das Phänomen auch bei anderen Spinnenseidenproteinen und in anderen Arten von Spinndrüsen auftritt.

Denn Spinnen haben in ihrem Hinterleib bis zu sieben solcher Drüsen, mit denen sie jeweils unterschiedliche Sorten von Fäden erzeugen.

"The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening”, Nature Communications, 15. November 2013, DOI 10.1038/ncomms3815



Weitere Meldungen

Fotos und Nachzeichnungen Originalfossils; Bildquelle: Jason Dunlop

Die älteste Spinne Deutschlands

In einem kürzlich in der internationalen Fachzeitschrift Paläontologische Zeitschrift veröffentlichten Artikel beschrieb Dr. Jason Dunlop vom Museum für Naturkunde Berlin die älteste jemals in Deutschland entdeckte Spinne
Weiterlesen

Larven von Köcherfliegen; Bildquelle: Wikimedia Commons, Bob Henricks, Lizenz CC BY-SA 2.0


Gen zur Seidenproduktion bei Spinnen zeigt individuelle Strukturen

Wo genau im Erbgut der Tiere die Fähigkeit verankert ist, unterschiedliche Beschaffenheiten von Seide zu bilden, und wie sich diese im Detail im Laufe der Evolution entwickelt hat, ist bisher kaum erforscht
Weiterlesen

Pseudopoda virgata; Bildquelle: Peter Jäger, Senckenberg

99 Riesenkrabbenspinnen-Arten neu beschrieben

Senckenberg-Spinnenforscher Dr. Peter Jäger hat gemeinsam mit Forschern aus China 99 neue Arten beschrieben
Weiterlesen

Krabbenspinnen der Australomisidia ergandros auf ihrem Nest aus Eukalyptusblättern.; Bildquelle: Jasmin Ruch

Australische Spinne Australomisidia ergandros: Männchen kooperieren häufiger als Weibchen

Männchen der australischen Spinne Australomisidia ergandros teilen ihre erjagte Beute eher mit den anderen Mitgliedern der Verwandtschaftsgruppe als die Weibchen
Weiterlesen

Die Spinnen sind nur etwa halb so groß wie ihre Ameisen-Beute; Bildquelle: Alfonso Aceves-Aparicio

Spinne fängt gefährliche Beute mithilfe akrobatischer Jagdstrategie

Erstmalig hat ein Forschungsteam mithilfe detaillierter Verhaltensanalysen gezeigt, wie die australische Spinne Euryopis umbilicata (ant-slayer) wesentlich größere und wehrhafte Beute erlegt
Weiterlesen

Springspinne (Evarcha arcuata) nachts in der hängenden "Schlaf"-Position (an einem seidenen Faden); Bildquelle: Daniela Rößler

Können Springspinnen träumen?

Die Konstanzer Biologin Dr. Daniela Rößler und ihr Team haben bei Springspinnen einen REM-Schlaf ähnlichen Zustand
Weiterlesen

Die Wespenspinne Argiope bruennichi mit Eikokon.; Bildquelle: Gabriele Uhl

Genetische Geschlechtsbestimmung bei Spinnen

Wissenschaftler*innen der Universitäten Greifswald, Hamburg und Prag haben für die europäische Wespenspinne genetische Marker entwickelt, die es erlauben, das Geschlecht winziger Jungspinnen aufzudecken
Weiterlesen

Ein Weibchen der Wespenspinne "Argiope bruennichi" in ihrem Netz mit einem männlichen Besucher.; Bildquelle: UHH/Schneider

Partnersuche bei Spinnen: Weibchen setzen Pheromone strategisch ein

In einer Studie an der Wespenspinne „Argiope bruennichi“ haben Wissenschaftlerinnen des Fachbereichs Biologie der Universität Hamburg zeigen können, dass die Weibchen ihre Pheromonmenge strategisch an die Paarungssituation anpassen können
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen