Der Vibrationssinn der Spinnen

(27.10.2011) Spinnen besitzen einen hervorragenden Vibrationssinn, der äußerst empfindlich und an die biologisch wichtigen Signale perfekt angepasst ist.

Dieser Sensibilität liegt eine ausgefeilte Mikromechanik zugrunde, die Clemens Schaber und Friedrich Barth vom Department für Neurobiologie der Universität Wien in Zusammenarbeit mit Stanislav Gorb von der Universität Kiel an der Jagdspinne "Cupiennius salei" sehr präzise untersucht haben.

Jagdspinne 'Cupiennius salei' mit Beuteinsekt; Bildquelle: Universität Wien
Jagdspinne "Cupiennius salei" mit Beuteinsekt

Zur Erlangung der genauen Kenntnisse der mechanischen Vorgänge bei der Aufnahme und Umformung von Vibrationsreizen haben die Wissenschafter Messungen im Mikronewton- und Nanometerbereich durchgeführt. Für die Funktionalität dieser Sensoren beginnt sich auch zunehmend die Industrie zu interessieren.

Die Ergebnisse sind aktuell im Journal of the Royal Society Interfacen erschienen.

Jagdspinnen sind hoch vibrationsempfindliche Tiere, und spielen dabei mit Kakerlaken, die interessanterweise an vorderster Stelle des Speiseplans der Spinnen stehen, in der Liga der Champions.

Die untersuchte Spinne "Cupiennius salei" aus der Familie der Bromelienspinnen (Ctenidae) baut keine Netze, sondern lauert in der Dunkelheit auf ihre Beute. Sie wird seit fünfzig Jahren als Modellorganismus für mechanorezeptive Systeme, bei denen ausgeklügelte Mechanismen den Reiz für die Sinneszellen aufbereiten, herangezogen.

Jagdspinne 'Cupiennius salei' Männchen; Bildquelle: Universität Wien
Jagdspinne "Cupiennius salei" Männchen

Friedrich Barth, emeritierter Professor für Neurobiologie der Universität Wien, hat die Spinne "Cupiennius salei" über Jahrzehnte beforscht. Ihr Beutefangverhalten stützt sich auf die mechanischen Sinne für Vibration und Luftströmungen.

Anhand des Reizmusters der Vibrationen und Luftströmungen ist die auf Pflanzen lauernde Spinne in der Lage, ihre Beute – vor allem Insekten – im Sprung aus der Luft zu fangen. Das erfordert ein hohes Maß an Koordination, das durch die Verdrahtung der für die Rezeption zuständigen Nervenzellen biologisch optimal gelöst ist.

Analyse der Mechanorezeption

Schwerpunkt der Forschungsarbeit war die Analyse der grundlegenden Mechanismen bei der Mechanorezeption, der Erforschung der Strukturen und Sinneszellen, die mechanische Kräfte in Nervenerregung umwandeln. Zur Detektion von Spannungen im Exoskelett – dem stabilisierenden Außenskelett – der Spinne dienen über 3.000 Spaltsensillen, membranbedeckte Schlitze in der Cuticula, der Außenhaut der Spinne.

Jagdspinne 'Cupiennius salei' Vibrationssensoren; Bildquelle: Universität Wien
Jagdspinne "Cupiennius salei" Vibrationssensoren

Die Spalte sind über das ganze Exoskelett verteilt. "Interessant ist, dass sich die raffiniertesten davon, die lyraförmigen Organe, in denen bis zu 30 hochempfindliche Spalte nahezu parallel angeordnet sind, in der Nähe der Gelenke der acht Beine der Spinne befinden.

Wir haben dabei Kräfte im Mikronewton-Bereich und die Verformung der Spalte der lyraförmigen Organe, die zur Auslösung nervöser Signale ausreichen, im Nanometer-Bereich gemessen", erklärt Clemens Schaber.

Jagdspinne 'Cupiennius salei' Vibrationsrezeptor; Bildquelle: Universität Wien
Jagdspinne "Cupiennius salei" Vibrationsrezeptor

Die Erforschung von Spinnen ist ein weiteres Mosaiksteinchen für das Verständnis der Evolution und der Diversität der Tiere. Darüber hinaus zeigt sich vonseiten der Hochtechnologie zunehmendes Interesse, bio-inspirierte Sensoren für technische Anwendungen zu entwickeln.

Publikation

Force transformation in spider strain sensors: white light interferometry. Clemens F. Schaber, Stanislav N. Gorb and Friedrich G. Barth. In: Journal of the Royal Society Interface. http://rsif.royalsocietypublishing.org/lookup/doi/10.1098/rsif.2011.0565



Artikel kommentieren

Weitere Meldungen

Mehdi Behroozi, Felix Ströckens und Xavier Helluy (von links) konnten zum ersten Mal Krokodilgehirne mit Kernspintomografie untersuchen.; Bildquelle: RUB, Marquard

Was passiert im Gehirn eines Krokodils, wenn es komplexe Klänge hört?

Diese Frage konnte ein internationales Forscherteam unter der Leitung von Dr. Felix Ströckens vom Lehrstuhl für Biopsychologie der Ruhr-Universität Bochum (RUB) beantworten
Weiterlesen

EFSA

Neuer Pilz bei EU-Salamandern entdeckt

Bei verschiedenen Salamanderarten wurde ein neu auftretender pathogener Pilz, Batrachochytrium salamandrivorans (Bsal), nachgewiesen
Weiterlesen

Micro-CT-Scan von Calumma gehringi ; Bildquelle: David Prötzel (SNSB-ZSM/LMU)

Drei neue Chamäleon-Arten auf Madagaskar entdeckt

Mehr als 40% der 206 bekannten Chamäleon-Arten leben ausschließlich auf Madagaskar. Münchner und madagassische Forscher haben nun drei neue Arten entdeckt
Weiterlesen

An dem fossilen Waran wurde ein viertes Auge entdeckt.; Bildquelle: A. Lachmann / Senckenberg Gesellschaft für Naturforschung / Digimorph.org .

Mit dem Vierten sieht man besser: Vieräugiges fossiles Reptil entdeckt

Senckenberg-Wissenschaftler haben mit einem internationalen Team den Nachweis für eine vieräugige Echse erbracht
Weiterlesen

Bufo shaartusiensis ist eine diploide Krötenart aus Shaartuz in Süd-Tadschikistan und wurde als mütterlicher Vorfahre von Kröten mit drei Chromosomensätzen identifiziert.; Bildquelle: Matthias Stöck

Wechselkröten zeigen: Arten mit vielfachen Genomen haben lediglich entfernt verwandte Vorfahren

Die meisten Wirbeltiere haben zwei Chromosomensätze, einen von der Mutter und einen vom Vater – auch wir Menschen sind diploid. Viel seltener ist die Polyploidie
Weiterlesen

Lebend-, Schädel- und Gehirnrekonstruktion von Proganochelys quenstedti, der ältesten Schildkröte (210 Millionen Jahre) mit vollständigem Panzer; Bildquelle: Stephan Lautenschlager, Universität Birmingham

Schildkrötengehirne sind komplexer als gedacht

Neue Studie wirft Licht auf die Gehirnevolution der Schildkröten und ihre frühen Umweltanpassungen
Weiterlesen

Der mexikanische Axolotl Ambystoma mexicanum; Bildquelle: IMP

Genom des Axolotl entschlüsselt

Ein Team von Wissenschaftlern aus Wien, Dresden und Heidelberg hat die gesamte Erbinformation des mexikanischen Salamanders Axolotl entschlüsselt
Weiterlesen

Einer der Feuersalamander in der Südeifel, von denen Proben genommen wurden.; Bildquelle: Universität Trier

Trierer Biogeographen erforschen „Salamanderfresser-Pilz“

Der „Salamanderfresser-Pilz“ Bsal gilt als Ursache von Massensterben bei Feuersalamandern und Molchen
Weiterlesen


[X]
Hinweis zur Nutzung von Cookies

Diese Website nutzt Cookies zur Bereitstellung von personalisierten Inhalten, Anzeigen, Inhalten von sozialen Medien und zur Analyse des Benutzerverhaltens. Die mit Hilfe von Cookies gewonnenen Daten werden von uns selbst sowie von uns beauftragten Partnern in den Bereichen soziale Medien, Online-Werbung und Website-Analyse genutzt. Durch den Besuch unserer Website erklären Sie sich damit einverstanden, dass wir Cookies setzen.

Mit der weiteren Nutzung dieser Website erklären Sie sich mit der Verwendung von Cookies einverstanden. Mehr erfahren...