Forschung mit Buntbarschen hilft Grundlagen komplexen Verhaltens zu verstehen

(16.04.2019) Wie werden komplexe Verhaltensweisen im Genom kodiert und im Gehirn verankert? Um diese zentrale Frage der Neurobiologie zu erforschen, erhalten Todd Streelman von Georgia Tech und Herwig Baier vom Max-Planck-Institut für Neurobiologie eine Forschungsförderung über 750.000 US-Dollar vom Human Frontier Science Program (HFSP).

Das Forschungsprojekt steht unter der Leitung von J. Todd Streelman und Herwig Baier. Streelman ist Professor an der Georgia Tech School of Biological Sciences (USA). Baier ist Direktor am Max-Planck-Institut für Neurobiologie in Martinsried.

Max-Planck-Institut für Neurobiologie „Es ist nach wie vor unglaublich schwierig, die zelluläre Basis und die genetischen Varianten zu bestimmen, die einem komplexen Verhalten zugrunde liegen“, sagt Streelman. „Um zu verstehen, wie Verhalten kodiert wird, müssen wir zwei Probleme lösen, das der Entwicklung des Nervensystems und das der Funktion der Schaltkreise.“

Um Antworten zu finden, wollen Streelman und Baier mit Hilfe von Buntbarschen aus dem Malawi-See ein Modellsystem entwickeln, das den komplexen Weg vom Genom über das Gehirn bis hin zum Verhalten aufzeichnet.

Männliche Buntbarsche bauen Lauben um Weibchen für die Paarung anzulocken. Die Lauben können die Form von Vertiefungen im Sand annehmen oder wie vulkanartige Burgen aussehen. Beide Laubentypen sind als entsprechendes Verhalten in bestimmten Fischlinien angelegt.

Wenn sich Fische aus den beiden Linien paaren, zeigen ihre männlichen Nachkommen ein bemerkenswertes Verhalten: Zuerst bauen sie eine Mulde, dann eine Burg. Dieses kombinierte Verhalten zeigt, dass ein einzelnes Gehirn, das beide Genome enthält, die beiden Verhaltenstypen nacheinander erzeugen kann.

In der Zeit, in der die Fische Mulden ausheben, ist die Genexpression im Fischgehirn auf die Muldenvariante des Genoms (Mulden-Allel) ausgerichtet. Während der Burgbauaktivität verschiebt sich die Expression auf das Burg-Allel.

„Dieses Phänomen bietet gleichzeitig die Möglichkeit die Logik hinter der Genomregulierung zu untersuchen, als auch die neuronalen Schaltkreise zu identifizieren, die diesem komplexen Verhalten zugrunde liegen“, so Baier.

Die Gruppe um Todd Streelman wird mit Hilfe von Einzelzell-RNA-Sequenzierung die Zellpopulationen identifizieren, die eine kontextabhängige, Allel-spezifische Expression im männlichen Fischgehirn vermitteln.

Das Team von Herwig Baier wird mit Genom-Editierung und optogenetischen Werkzeugen bestimmte Nervenzellen im Gehirn beeinflussen, während die männlicher Fische ihre Lauben bauen.

„Durch unsere gemeinsame Arbeit wollen wir die Nervenzellen identifizieren, die verhaltensspezifische Allele exprimieren und können diese Zellen idealerweise den Verhaltenstypen zuordnen“, sagt Baier.

„So können wir zeigen, wie das Genom in bestimmten Zelltypen aktiviert wird, um kontextabhängige, soziale Verhaltensweisen zu erzeugen“, so Streelman.



Artikel kommentieren

Weitere Meldungen

Amazonenkärpflinge vermehren sich durch Klonung und eignen sich deshalb ideal dazu, den Einfluss von Vertrautheit zu erforschen.; Bildquelle: David Bierbach

Fische, die sich lange kennen, gehen aggressiver miteinander um

Bei Tieren kann die Aggressivität untereinander steigen, wenn die Individuen längere Zeit in unveränderten Gruppen zusammenleben
Weiterlesen

Fisch mit Spiegel; Bildquelle: A. Jordan

Putzerfische scheinen sich selbst im Spiegel zu erkennen

Schimpansen, Delfine, Krähen und Elstern erkennen ihr Spiegelbild als Abbild des eigenen Körpers. Bislang gilt dies als Anzeichen dafür, dass diese Arten ein Bewusstsein von sich selbst besitzen
Weiterlesen

Sarah Hartmann (l.) und Prof. Dr. Klaudia Witte von der Universität Siegen haben herausgefunden, dass Zebrafische Infrarotlicht sehr wohl wahrnehmen können.; Bildquelle: Universität Siegen

Wenn für Fischlarven die Nacht zum Tag wird

Biologinnen der Universität Siegen haben herausgefunden, dass Zebrafischlarven Infrarotlicht wahrnehmen können. Das hat weitreichende Konsequenzen für wissenschaftliche Versuche mit diesen Larven
Weiterlesen

Max-Planck-Institut für Neurobiologie

Woran erkennt ein Fisch einen Artgenossen?

Wissenschaftler vom Max-Planck-Institut für Neurobiologie in Martinsried zeigen, dass Zebrafische bereits einen virtuellen Punkt als Schwarmpartner erkennen - vorausgesetzt, der Punkt bewegt sich wie ein Fisch
Weiterlesen

Der Elefantenrüsselfisch erzeugt kurze schwache Spannungspulse, mit deren Hilfe er seine Umgebung wahrnimmt. Dabei besitzen unterschiedliche Objekte verschiedene "elektrische Farben".; Bildquelle: Martin Gottwald/Uni Bonn

Fisch erkennt seine Beute an elektrischen Farben

Der afrikanische Elefantenrüsselfisch erzeugt schwache elektrische Pulse, um sich in seiner Umgebung zurecht zu finden. Dieser Ortungs-Sinn weist augenscheinlich eine erstaunliche Parallele zum Sehen auf, wie nun eine Studie der Universität Bonn zeigt
Weiterlesen

Schmetterlingsbuntbarsch; Bildquelle: IGB/shutterstock

Fische scheuen kein Blitzlichtgewitter

Fische können - ähnlich wie Säugetiere und Menschen - Stress empfinden. Sie schütten dann die Hormone Adrenalin und Cortisol aus
Weiterlesen

Venezuela Guppys; Bildquelle: David Bierbach, IGB

Lichtverschmutzung macht Fische mutig

Künstliches Licht in der Nacht macht Guppys am Tage risikobereiter, so das Ergebnis eines Verhaltensexperiments von Forschern des Leibniz-Instituts für Gewässerökologie und Binnenfischerei (IGB) und des Max-Planck Instituts für Bildungsforschung
Weiterlesen

Seitenansicht einer 6 Tage alten Zebrafischlarve, unter dem Konfokalmikroskop erstellt; Bildquelle: Aristides Arrenberg

Tübinger Neurowissenschaftler stellen selbst entwickeltes Software für Verhaltensstudien an Fischen frei zur Verfügung

Zebrafische gehören erst seit kurzem zu den wichtigsten Tiermodellen der neurowissenschaftlichen Forschung. Laboreinrichtung und Software zur Analyse ihres Verhaltens sind daher oft extrem spezialisiert und teuer
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen

19.04.