Fisch mit Augenlampe

(27.02.2018) Forscherinnen und Forscher der Universität Tübingen entdecken erstmals bei tagaktiven Meeresbewohnern die Voraussetzungen für eine aktive Ortung mittels Licht

Manche Tiere erweitern ihre Sinne, indem sie aktiv Signale aussenden und aus den Reflexionen naher Objekte ihre Umgebung oder zum Beispiel Beutetiere ausmachen – gut untersuchte Beispiele sind die Echoortung mit Ultraschalllauten bei Fledermäusen und Delfinen sowie die Elektroortung bei manchen Fischen.

Eberhard Karls Universität Tübingen

Die Lichtortung, also das aktive Aussenden von Lichtstrahlen und die Auswertung der Reflexion, ist bisher nur von Tiefseefischen bekannt, die chemisch erzeugtes Licht als Suchscheinwerfer im Dauerdunkel der tiefen Ozeane nutzen.

Nun hat Professor Nico Michiels vom Institut für Evolution und Ökologie der Universität Tübingen gemeinsam mit seinem Team Hinweise auf den Einsatz der aktiven Lichtortung bei tagaktiven Fischen entdeckt.

Die Forscher konnten erstmals nachweisen, dass Fische senkrecht einfallendes Sonnenlicht kontrolliert und in Anpassung an die Umgebung aktiv seitwärts in Augenblitze umlenken. Die Forschungsergebnisse werden in der Fachzeitschrift Royal Society Open Science veröffentlicht.

Bei seinen Experimenten arbeitete das Forscherteam mit dem vier Zentimeter langen Gelben Spitzkopf-Schleimfisch (Tripterygion delaisi), der im Atlantik und im Mittelmeer vorkommt.

Er ernährt sich hauptsächlich von weitgehend durchsichtigen, weniger als einen Millimeter großen Kleinkrebsen. Während der Mensch eine Taschenlampe benötigt, um mit ihrem Lichtkegel dunkle Winkel auszuleuchten, kann der Schleimfisch das Sonnenlicht für seine Zwecke anpassen und in dunkle Bereiche umlenken.

„Die anatomischen Voraussetzungen dafür finden sich bei vielen tagaktiven Fischen mit einer großen Iris“, sagt Michiels. „Doch am Schleimfisch haben wir zum ersten Mal untersucht, wie der Mechanismus für die aktive Lichtortung funktionieren könnte.“ Die Schleimfische leben in rund zehn Metern Tiefe, wohin das Sonnenlicht durchdringt.

„Es wird von den seitlich vorstehenden Augenlinsen auf die untere Regenbogenhaut fokussiert, auf der sich rot fluoreszierende und blau reflektierende Bereiche finden“, erklärt der Wissenschaftler. „Durch Kippen und Drehen des Auges kann der Fisch den Lichtstrahl lenken und aktiv entweder rote oder blaue Augenblitze abgeben.“

Zwei Blitzfarben zur Auswahl

Der Fisch kann so die ersten Zentimeter seiner direkten Umgebung ausleuchten. „Voraussetzung für die Lichtortung ist, dass die Fische die Augenblitze kontrollieren können, um selbst nicht zu Beute zu werden“, sagt Michiels. Um das zu überprüfen, haben sich die Forscher zunutze gemacht, dass der Gelbe Spitzkopf-Schleimfisch zwei Blitzfarben zur Auswahl hat.

„Tatsächlich haben wir festgestellt, dass die Fische die Farbe der Augenblitze an die Umgebung anpassen. Bei rotem Hintergrund senden sie blaue Augenblitze aus – und umgekehrt.“ Auch nehme die Frequenz der Augenblitze zu, wenn Kleinkrebse als mögliche Beute verfügbar sind.

„Wir konnten jedoch nicht feststellen, dass hungrige Fische mehr Augenblitze erzeugen als satte“, so der Forscher. Daher müsse nun in weiteren Experimenten geklärt werden, ob die Schleimfische ihre Fähigkeiten für die aktive Lichtortung zum Auffinden von Beute nutzen oder möglicherweise für andere Zwecke. „Wir stehen auf diesem Forschungsgebiet noch ganz am Anfang. Die Fähigkeit zur Lichtortung wurde bisher kaum beachtet“, erklärt Michiels.

Publikation

Nico K. Michiels, Victoria C. Seeburger, Nadine Kalb, Melissa G. Meadows, Nils Anthes, Amalia A. Mailli and Colin B. Jack: Controlled iris radiance in a diurnal fish looking at prey. Royal Society Open Science, DOI 10.1098/rsos.170838.



Weitere Meldungen

Ardian Jusufi und der weiche robophysikalische Modellfisch; Bildquelle: Cyber Valley

Schwimmroboter gibt wertvolle Einblicke in die Fortbewegung von Fischen

Immer mehr Forscher entwickeln Robotermodelle, die der morphologischen Intelligenz von Tieren entsprechen
Weiterlesen

Abbildung 1: Zebrafischspermien; Bildquelle: MNS

Neu entdeckte Ionenkanalfamilie gibt Fischspermien den Takt vor

Fische leben sowohl in Salz- als auch Süßwasser. Wie aber passt sich ihre Fortpflanzung an die verschiedenen Lebensräume an?
Weiterlesen

Kinderstube des Weißen Hais Carcharodon carcharias in Chile; Bildquelle: Jaime A. Villafaña / Universität Wien

Erste Kinderstube des Weißen Hais entdeckt

Ein internationales Forschungsteam unter der Leitung von Jaime A. Villafaña vom Institut für Paläontologie der Universität Wien entdeckte die erste fossile Kinderstube des Weißen Hais Carcharodon carcharias in Chile
Weiterlesen

Laboranlage für die experimentelle Aufzucht von Fischlarven mit lebenden Zooplankton unter Grünwasserbedingungen; Bildquelle: Adrian Bischoff-Lang

Internationales Projekt zur Stärkung der Aquakultur im südbaltischen Raum gestartet

Zum 1. Januar 2020 wurde das Interreg-Projekt AquaVIP ins Leben gerufen, das auf eine Entwicklung des Aquakultursektors und eine Verlagerung des Schwerpunkts in den südöstlichen Ostseeraum zielt
Weiterlesen

In der Studie verwendete Fossilien, wie sie in Marokko gefunden wurden.; Bildquelle: Christian Klug / UZH

Ausgestorbener Panzerfisch Titanichthys filterte Nahrung aus dem Wasser

Er lebte vor 380 Millionen Jahren in den Meeren des späten Devons und war bis zu sieben Meter lang: Der Panzerfisch Titanichthys
Weiterlesen

Aquaponikanlage ; Bildquelle: Hendrik Monsees, IGB

Kombinierte Fisch- und Gemüsezucht in Aquaponik kann profitabel sein

Wenn es um die Nahrungsproduktion der Zukunft geht, ist die kombinierte Fisch- und Gemüsezucht in Aquaponik ein viel diskutiertes Trendthema
Weiterlesen

Ein Schnitt durch den Haiwirbel zeigt Wachstumsringe, ähnlich denen in Baumstämmen.; Bildquelle: Patrick L. Jambura

Riesiger Teenagerhai aus der Urzeit

Fossile Wirbel geben Einsichten zum Wuchs und Aussterben einer mysteriösen Haigruppe: Wissenschaftler der Universität Wien konnten Teile einer Wirbelsäule, die 1996 an der Nordküste Spaniens gefunden wurde, der ausgestorbenen Gruppe der ptychodonten Haie zuordnen
Weiterlesen

3000 Versuchstiere wurden in einen Fluss ohne Stichlinge entlassen und so der natürlichen Auslese ausgesetzt. Nach einem Jahr wurden die verbleibenden Fische eingefangen und genetisch untersucht.; Bildquelle: Universität Basel, Dario Moser

Schnelle Evolution bei Fischen: Erbgut ändert sich in einer Generation

Basler Forschende haben die genetischen Grundlagen schneller Anpassung am Beispiel einer einheimischen Fischart identifiziert. Dafür verglichen sie Dreichstachlige Stichlinge aus unterschiedlichen Lebensräumen der Bodenseeregion
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen