Wie Fische in Salzwasser überleben: Forscher untersuchen Wechselwirkung von Molekülen

(30.10.2018) Für Seetiere ist es wichtig, dass der Druck in ihren Zellen – der sogenannte osmotische Druck – dem äußeren Wasserdruck entgegenwirkt, damit sie in Salzwasser überleben können. Ansonsten würden ihre Zellen implodieren oder explodieren.

Forscher haben in der Vergangenheit herausgefunden, dass in der Zelle zwei Moleküle für die Kontrolle des Druckes verantwortlich sind. Diese werden Trimethylamin-N-oxid (TMAO) und Harnstoff genannt.

Bisher war jedoch unklar, warum zwei unterschiedliche Moleküle notwendig sind. In einer internationalen Kollaboration haben Forscher des Max-Planck-Instituts für Polymerforschung dieses Rätsel nun gelöst.

TMAO und Harnstoff sind Moleküle, die den osmotischen Druck in lebenden Zellen beeinflussen, sogenannte Osmolyte. Durch eine hohe Konzentration von TMAO und Harnstoff können Seetiere den osmotischen Druck in ihren Zellen auf einem Wert halten, der vergleichbar mit dem des umgebenden Salzwassers ist.


Forscher studieren die molekularen Prozesse, mit denen Fische sich an die rauhen Bedingungen in Salzwasser anpassen können

Zusätzlich zu ihrer osmotischen Wirkung haben die beiden Moleküle noch Nebeneffekte auf die in den Zellen vorhandenen Proteine.

Auf der einen Seite destabilisiert Harnstoff die Proteine in den Zellen und sorgt damit für ein Absterben der Zellen. Auf der anderen Seite stabilisiert eine nicht zu große Menge TMAO die Proteine.

In lebenden Zellen sind sowohl TMAO als auch Harnstoff in einem Verhältnis von 1:2 (TMAO:Harnstoff) zu finden, und es wird angenommen dass beide Moleküle eine Bindung ausbilden.

Während jedes einzelne Molekül auf die Proteine einer Zelle stabilisierend bzw. destabilisierend wirkt, wechselwirkt die Kombination der beiden Moleküle nicht mehr mit den Proteinen – der Effekt wird also durch die Verbindung der Moleküle aufgehoben.

Die Wissenschaftler des Max-Planck-Instituts für Polymerforschung haben nun zusammen mit Wissenschaftlern aus Japan, China und den USA untersucht, wie genau sich die beiden Moleküle verbinden.

Bisher wurde davon ausgegangen, dass sich die beiden Moleküle durch eine Wechselwirkung des in Harnstoff vorhandenen Wasserstoff-Atoms sowie des in TMAO vorhandenen Sauerstoff-Atoms durch sogenannte Wasserstoffbrückenbindungen verbinden.

Im Gegensatz dazu haben andere experimentelle Untersuchungen gezeigt, dass die beiden Moleküle keine Wasserstoffbrückenbindungen auszubilden scheinen.

Um das Rätsel zu lösen haben die Forscher nun die intermolekularen Wechselwirkungen sowohl theoretisch als auch experimentell untersucht. In ihrer Arbeit haben sie in Wasser gelöste TMAO- und Harnstoff-Moleküle untersucht.

Dies stellte eine erste Herausforderung dar, da die Moleküle sich in Wasser schnell bewegen und daher eine Messung der molekularen Bindungen schwierig ist. Daher haben die Forscher zunächst Computersimulationen der beiden Moleküle durchgeführt, um hiermit die Bindungseigenschaften theoretisch zu beschreiben.

Um ihre theoretischen Ergebnisse zu bestätigen haben die Wissenschaftler im Anschluss daran spektroskopische Messungen im Infrarotbereich sowie magnetresonanzspektroskopische Messungen durchgeführt, die sie mit den theoretischen Ergebnissen vergleichen konnten.

Basierend auf der Übereinstimmung von Messung und Simulation stellten die Forscher fest, dass TMAO und Harnstoff keine Wasserstoffbrückenbindungen ausbilden, wenn sie in Wasser gelöst werden. Sie konnten zeigen, dass das Sauerstoff-Atom von TMAO nicht mit dem Wasserstoff-Atom von Harnstoff wechselwirkt, jedoch eine Bindung mit dem Wasserstoff-Atom von Wasser eingeht.

Daher ist das Sauerstoff-Atom von TMAO bereits mit Wasser verbunden, steht also nicht mehr für eine Verbindung mit Harnstoff zur Verfügung. Um die interzellulären Proteine jedoch zu schützen müssen sich beide Moleküle trotzdem verbinden – jedoch, wie die Forscher zeigen konnten – durch eine Verbindung an einer anderen Stelle des TMAO-Moleküls, die einen wasserabweisenden (hydrophoben) Charakter hat.

Das molekulare Verständnis, wie Moleküle in Zellen die Struktur von Proteinen kontrollieren, ist der Schlüssel zum Verständnis der biologischen Wirkung dieser Moleküle. Die Resultate ihrer Forschung haben die Wissenschaftler nun in dem Journal „Chem“ veröffentlicht.



Artikel kommentieren

Weitere Meldungen

Der Elefantenrüsselfisch erzeugt kurze schwache Spannungspulse, mit deren Hilfe er seine Umgebung wahrnimmt. Dabei besitzen unterschiedliche Objekte verschiedene "elektrische Farben".; Bildquelle: Martin Gottwald/Uni Bonn

Fisch erkennt seine Beute an elektrischen Farben

Der afrikanische Elefantenrüsselfisch erzeugt schwache elektrische Pulse, um sich in seiner Umgebung zurecht zu finden. Dieser Ortungs-Sinn weist augenscheinlich eine erstaunliche Parallele zum Sehen auf, wie nun eine Studie der Universität Bonn zeigt
Weiterlesen

Öko-Institut e. V. - Institut für angewandte Ökologie

Mehr Fisch aus nachhaltiger Aquakultur auf den Teller!

Fisch und Fischprodukte sind Bestandteile einer ausgewogenen und gesunden Ernährung. In Deutschland kommen jährlich mehr als eine Million Tonnen Fisch und Fischprodukte auf deutsche Teller
Weiterlesen

Bundesanstalt für Wasserbau (BAW)

Fische schwimmen im Modell

Kern der Arbeit ist die Entwicklung, Kalibrierung und Validierung eines individuenbasierten Modells, mit dessen Hilfe das Verhalten von aufwärts wandernden Fischen auf räumlichen Skalen von Dezimetern und zeitlichen Skalen von Sekunden simuliert werden kann
Weiterlesen

Bei den Fütterungsversuchen von Stéphanie Michl variierte der Anteil pflanzlicher Rohstoffe im Futter zwischen 0, 50 und 90 Prozent.; Bildquelle: Dr. Johann Torno

Dr. Stéphanie Michl erhielt Förderpreis des VDFF

Kieler Aquakultur-Forscherin erhielt den mit 2.000 Euro dotierten Preis für ihre Doktorarbeit
Weiterlesen

Dr. Matthias Schaber vom Thünen-Institut besendert einen Hundshai. Die Augen des Tieres sind zur Beruhigung mit einem feuchten Tuch abgedeckt.; Bildquelle: Thünen-Institut/Matthias Schaber

Versuche mit satellitenbasierten Sendern in der Nordsee sollen Wanderungsverhalten von Hundshaien aufklären

Er ist der größte in deutschen Gewässern stetig vorkommende Hai und in der aktuellen Roten Liste der Meeresfische Deutschlands als „stark gefährdet“ eingestuft: der Hundshai (Galeorhinus galeus)
Weiterlesen

Sepia officinalis; Bildquelle: Stephan Junek; Max-Planck-Institut für Hirnforschung

Einblicke in das Tarnverhalten von Sepien

Die einzigartige Fähigkeit der Sepien, Kalmare und Oktopoden, sich zu verstecken, indem sie die Farben und Texturen ihrer Umgebung nachahmen, hat Naturwissenschaftler seit Aristoteles fasziniert
Weiterlesen

Schmetterlingsbuntbarsch; Bildquelle: IGB/shutterstock

Fische scheuen kein Blitzlichtgewitter

Fische können - ähnlich wie Säugetiere und Menschen - Stress empfinden. Sie schütten dann die Hormone Adrenalin und Cortisol aus
Weiterlesen

Sea Shepherd Schiff 'Sam Simon'; Bildquelle: Sea Shepherd

Sea Shepherd startet neue Kampagne im Mittelmeer

Zusammen mit der Stiftung zum Schutz der Äolischen Inseln bekämpft Sea Shepherd die illegale, unregulierte und undokumentierte Fischerei (IUU-Fischerei) im Bereich der Äolischen Inseln in Italien
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen