Lungenfischflossen zeigen, wie sich Gliedmaßen entwickelten

(20.08.2020) Neue Untersuchungen zur Flossenentwicklung des Australischen Lungenfischs durch eine internationale Forschungsgruppe mit Beteiligung der Universität Konstanz, der Macquarie University in Sydney und der Stazione Zoologica Anton Dohrn in Neapel verdeutlichen, wie sich Flossen zu Gliedmaßen mit Händen und Fingern beziehungsweise Füßen und Zehen entwickelten.

Die Haupterkenntnis ist, dass beim Lungenfisch bereits eine primitive Hand vorhanden ist, funktionsfähige Finger und Zehen sich bei Landwirbeltieren aber erst aufgrund von Veränderungen in der Embryonalentwicklung herausbildeten.

Universität Konstanz

Die Entwicklung von Gliedmaßen mit funktionellen Fingern und Zehen aus Fischflossen fand vor etwa 400 Millionen Jahren, im Devon, statt. Dieser morphologische Wandel ermöglichte es Wirbeltieren, das Land zu erobern, und brachte alle vierbeinigen Tiere oder Tetrapoden hervor – die evolutionäre Stammlinie, die alle Amphibien, Reptilien, Vögel und Säugetiere (einschließlich des Menschen) umfasst.

Seit dem 19. Jahrhundert wurden verschiedene Theorien aufgestellt, die mit Blick sowohl auf Fossilien also auch auf Embryonen zu erklären versuchen, wie sich dieser Wandel vollzog. Wie genau Hände mit Fingern aus Fischflossen entstanden blieb jedoch ungeklärt.

Eine internationale Arbeitsgruppe aus Biologen der Universität Konstanz (Deutschland), der Macquarie University in Sydney (Australien) und der Stazione Zoologica Anton Dohrn in Neapel (Italien) hat anhand von Embryonen des Australischen Lungenfisches (Neoceratodus forsteri) untersucht, wie sich Gliedmaßen aus Flossen entwickelt haben.

Der Australische Lungenfisch ist der mit den Tetrapoden nächstverwandte heute noch lebende Fisch und wird oft als „lebendes Fossil“ betrachtet, da er immer noch den Fischen ähnelt, die es zu der Zeit gab, als die ersten viergliedrigen Wirbeltiere begannen, an Land zu gehen. Aus diesen Gründen bieten die Flossen von Lungenfischen einen besseren Bezugspunkt für die Untersuchung des evolutionären Übergangs von Flossen zu Gliedmaßen als die jeder anderen heute lebenden Fischart.

Die Forschungen der Arbeitsgruppe, die in der neuesten Ausgabe von Science Advances erscheinen, zeigen, dass in den Lungenfischflossen eine primitive Hand vorhanden ist, lassen aber gleichzeitig vermuten, dass die einzigartige Anatomie der Gliedmaßen mit Fingern/Zehen erst während der Entstehung der Tetrapoden durch Veränderungen bei der Embryonalentwicklung aufkam.

Erkenntnisse aus der Embryonalentwicklung: „Architekten“-Gene der Gliedmaßen

Um das Rätsel zu lösen, wie Gliedmaßen während der Evolution aus Flossen entstanden, hat sich die Forschung auf die Embryonalentwicklung konzentriert.

„Während der Embryogenese formt ein Satz von ‚Architekten’-Genen eine amorphe Gruppe von Vorläuferzellen zu voll ausgebildeten Gliedmaßen“, erklärt Dr. Joost Woltering, Erstautor der Studie und Dozent sowie Forscher in der von Prof. Dr. Axel Meyer geleiteten Arbeitsgruppe für Evolutionsbiologie an der Universität Konstanz.

 Dieselben „Architekten“-Gene treiben auch die Flossenentwicklung an. Da jedoch evolutionäre Veränderungen in der Aktivität dieser Gene stattgefunden haben, entstehen während des Entwicklungsprozesses Flossen bei Fischen und Gliedmaßen bei Tetrapoden.

Um diese Prozesse zu vergleichen, untersuchte die Arbeitsgruppe solche „Architekten“-Gene in den Embryonen der Australischen Lungenfische.

„Erstaunlicherweise sahen wir, dass das Gen, das die Hand in Gliedmaßen spezifiziert – hoxa13 –, in einer ähnlichen Skelettregion in Lungenfischflossen aktiviert ist“, erklärt Woltering.

Ein wesentlicher Punkt ist, dass diese Domäne in den Flossen anderer Fische, die weniger nah mit Tetrapoden verwandt sind, nie beobachtet wurde. „Diese Entdeckung zeigt deutlich, dass eine primitive Hand bereits bei den Vorfahren der Landwirbeltiere vorhanden war“.

Entwicklungsmuster: Unterschiede und Gemeinsamkeiten

Die „Hand“ des Lungenfischs ähnelt jedoch trotz dieser modernen genetischen Signatur nur teilweise der Anatomie von Tetrapodenhänden, denn Finger oder Zehen fehlen.

Um die genetische Grundlage für diesen Unterschied nachzuvollziehen, analysierte das Team weitere Gene, die mit der Bildung von Fingern und Zehen in Zusammenhang gebracht werden.

Dabei stellte sich heraus, dass ein Gen, das für die Bildung von Fingern und Zehen wichtig ist (hoxd13 – ein „Schwestergen“ des oben erwähnten hoxa13), in Flossen offenbar anders aktiviert wird.

Während der Entwicklung der Tetrapodengliedmaßen wird das Gen hoxd13 dynamisch eingeschaltet. Es wird zunächst im sich entwickelnden kleinen Finger aktiviert, dann breitet sich die Aktivität in Daumenrichtung über die gesamte zukünftige Hand aus.

Dieser Prozess koordiniert die korrekte Ausbildung aller fünf Finger. Während die Arbeitsgruppe von Joost Woltering ein ähnliches Aktivierungsmuster dieses Gens in Lungenfischflossen beobachtete, zeigte es diese Ausbreitung nicht, sondern blieb nur in einer Hälfte der Flosse aktiviert.

Zusätzliche Unterschiede wurden für Gene gefunden, die in Fingern und Zehen normalerweise abgeschaltet werden. In Lungenfischflossen bleiben diese Gene aktiv, aber auf der gegenüberliegenden Seite der Domäne, in der hoxd13 aktiviert wird.

Alte Hypothesen – zukünftige Richtungen

„All dies zeigt, dass zwar Lungenfischflossen unerwartet eine primitive Hand mit Tetrapoden gemeinsam haben, die Flossen unserer Vorfahren jedoch noch einen evolutionären ‚letzten Schliff’ benötigten, um Gliedmaßen zu bilden. In diesem Sinne sieht es so aus, als ob die Hand zuerst da gewesen sei und erst später im Laufe der Evolution um Finger ergänzt wurde“, sagt Woltering.

Eine einflussreiche Hypothese zur Entwicklung von Gliedmaßen, die zuerst von den Paläontologen Thomas Westoll und William Gregory zu Beginn des 20. Jahrhunderts entwickelt und in den 1980er Jahren von Neil Shubin weiterentwickelt wurde, nimmt an, dass Finger und Zehen durch eine Ausdehnung der Skelettelemente auf einer Seite der Flossen des Tetrapodenvorfahren entstanden.

Diese angenommene Ausdehnung der Flossenelemente entspricht genau den Unterschieden, die das Forschungsteam bei der Ausbreitung der Fingergene zwischen Lungenfischflossen und Tetrapodengliedmaßen gefunden hat.

Die Beobachtungen der Arbeitsgruppe zur Aktivierung und Deaktivierung von Gliedmaßen-“Architekten“-Genen in Lungenfischflossen liefern somit Belege für dieses klassische Umwandlungsmodell.


Weitere Meldungen

Bilder einzelner Scans von Fischgehirnen (blau = Region, die für Verarbeitung visueller Reize zuständig ist). A. Muräne. B. Fasanbutt.; Bildquelle: Iglesias et al. 2018

Nachtaktive Fische haben kleinere Gehirne

Ein internationales Forscherteam hat herausgefunden, dass nachtaktive Fische trotz ihrer größeren Augen kleinere Gehirnareale zur Verarbeitung visueller Reize haben als tagaktive Fische
Weiterlesen

Max-Planck-Gesellschaft

Das Herz der Landwirbeltiere hat sich aus dem Herz urtümlicher Fische entwickelt

Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim haben herausgefunden, dass sich das Herz der Landwirbeltiere aus dem Herz urtümlicher Fische entwickelt hat
Weiterlesen

Julius-Maximilians-Universität Würzburg

Was die Flunder platt macht

Flundern haben aufgrund ihres unsymmetrischen Körperbaus Wissenschaftler schon immer vor Rätsel gestellt. Jetzt hat der Vergleich des Erbguts zweier verwandter Fischarten den Mechanismus aufgedeckt, der für die ungewöhnliche Asymmetrie verantwortlich ist
Weiterlesen

LMU

Fisch-Taxonomie: Studie zu Gehörsteinchen

Die erste umfassende Studie zu Gehörsteinchen bei afrikanischen Prachtgrundkärpflingen liefert wertvolle Informationen für die Identifikation fossiler Überreste der Fische und hilft, deren Evolutionsgeschichte nachzuvollziehen
Weiterlesen

Prof. Dr. Stefan Schuster und Dipl.-Biol. Peggy Gerullis, Lehrstuhl für Tierphysiologie der Universität Bayreuth; Bildquelle: Christian Wißler

Wie Schützenfische die Gesetze der Hydrodynamik anwenden

Für Menschen ist es bis heute eine technologische Herausforderung, doch Schützenfische beherrschen diese Kunst perfekt: Sie können freie Wasserstrahlen produzieren, die Ziele in unterschiedlicher Entfernung präzise erreichen
Weiterlesen

240 Millionen Jahre altes Fossil des urtümlichen Fisches Saurichtys curionii aus dem UNESCO Welterbe Monte San Giorgio im Tessin; Bildquelle: UZH

Neues Evolutionsmuster für lang gestreckte Fische

Der längliche, aalförmige Körper einiger heutiger Fische hat sich auf verschiedene Arten ausgebildet. Eine neue Variante zur Streckung der Körperachse entdeckten Paläontologen der Universität Zürich an einem urtümlichen Fisch aus dem Südtessin
Weiterlesen

Der ausgestorbene Placoderm hatte Bauchmuskeln; Bildquelle: Eastman and Compago

Australische Forscher entdecken Fossilienfische mit geriffelten Bauchmuskeln

Normalerweise haben Fische keine geriffelten Bauchmuskeln – doch genau darauf sind Paläontologen bei ihrer Arbeit im nördlichen Westaustralien nun gestoßen: in Form von Fossilien
Weiterlesen

Etroplus-maculatus; Bildquelle: Universität Wien

Akustische Funktionen der Schwimmblase bei Buntbarschen

Die Schwimmblase dient bei Knochenfischen – Fische mit verknöcherten Skeletten – in erster Linie dem Auftrieb
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen

09.10.