Zebrafische jagen punktgenau: Beute wird bereits von den Zellen der Zebrafisch-Netzhaut erkannt

(14.12.2014) Sehen – erkennen – handeln. Diese drei Worte beschreiben, wie ein Sinneseindruck zu einer gezielten Bewegung führen kann. Wie und wo das Gehirn äußere Eindrücke in Verhaltensantworten umwandelt, ist jedoch größtenteils unbekannt.

Nun konnten Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München wichtige Schaltkreis-Stationen des Beutefangverhaltens junger Zebrafische aufklären. Die Ergebnisse zeigen, dass bereits die Nervenzellen der Augen-Netzhaut Beuteobjekte aus anderen Umweltsignalen herausfiltern.


Wenn eine Zebrafischlarve ein Beuteobjekt sieht, wird diese Information an Nervenzellen (blau) in der AF7-Hirnregion weitergeleitet.
Die Zellen geben diese Informationen dann an eine Hirnregion mit bislang unbekannter Aufgabe weiter. Hier werden dann die entsprechenden Schwimmbewegungen eingeleitet.

Einen Ball zu fangen ist nicht leicht. Der Ball muss erkannt und mit den Augen verfolgt werden. Gleichzeitig müssen die eigenen Bewegungen so koordiniert werden, dass die Hände den Ball zur richtigen Zeit und am richtigen Ort festhalten.

Für Tiere ist solch eine Koordination von visuellen Eindrücken und eigenen Bewegungen überlebenswichtig: Nur so können sie Beute erkennen, verfolgen und fangen. Bei vielen Tieren ist das grundlegende Beutefangverhalten daher angeboren. Wie und wo das Gehirn ein Objekt erkennt, klassifiziert und die entsprechenden Bewegungsmuster einleitet, war bislang ungeklärt.

Beute lässt das Fischgehirn aufleuchten

Zebrafischlarven können bereits direkt nach ihrem Schlüpfen kleine Einzeller wie Pantoffeltierchen jagen. Das Gehirn der Fischchen ist in der Lage die Einzeller als Ziel zu erkennen, die Entfernung zu berechnen und den Körper mit charakteristischen Schwanzbewegungen zu seiner Beute zu lenken. Dieses angeborene Beutefangverhalten kann im Labor auch durch kleine, sich bewegende Punkte ausgelöst werden.

So können Wissenschaftler potentielle "Beute" auf einem Miniaturbildschirm präsentieren und die darauf folgenden Vorgänge im Fischgehirn untersuchen – denn Zebrafischlarven sind fast durchsichtig. Durch genetische Modifikationen leuchten im transparenten Gehirn der Fische die Nervenzellen auf, die gerade aktiv sind. Vorgänge im Fischgehirn können so durch ein Mikroskop beobachtet werden, während die Tiere Beute erkennen, klassifizieren und auf sie zuschwimmen.

Um die neuronalen Schaltkreise des Beutefangverhaltens zu verstehen, konzentrierten sich die Neurobiologen zunächst auf das Erkennen von Beuteobjekten. "Als erstes haben wir uns die Verbindungen der Netzhaut mit dem Gehirn angesehen", beschreibt Julia Semmelhack ihre Arbeit.

Nervenzellen der Zebrafischnetzhaut münden in zehn sogenannten AF-Regionen im Gehirn. Welche Aufgabe diese Regionen haben, ist jedoch weitgehend unbekannt. Nun konnten die Martinsrieder Wissenschaftler zeigen, dass die Nervenzellen in einer dieser zehn AF-Regionen immer dann aktiv wurden, wenn die gezeigten Punkte in das optimale Beuteschema der Fische passten.

Größere oder kleinere Punkte hatten keinen Effekt. Nur bei virtuellen Punkten in der "richtigen" Größe (und bei echten Pantoffeltierchen) leuchtete die AF7 Hirnregion auf.

Eine Hirnregion gibt sich zu erkennen

Die weiteren Untersuchungen zeigten, dass bereits die Nervenzellen der Netzhaut potentielle Beuteobjekte aus der Umgebung herausfiltern. Nur wenn ein Punkt "passt", wird die Information an die AF7-Region weitergegeben.

Von dort wird dann der Jagdimpuls in andere Sehregionen und in die bewegungssteuernden Areale weitergeleitet. Als die Wissenschaftler die AF7-Verbindungen kappten, reagierten die Fische nur noch sehr eingeschränkt auf Beutepunkte.

Die AF7-Region ist somit essentiell, um visuelle Reize als Beute einzuordnen und ein entsprechendes Jagdverhalten auszulösen. "Wir haben gezeigt, wie ein optischer Eindruck von der Netzhaut über die AF7-Region zu einem bestimmten Verhalten führt", freut sich Herwig Baier, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie untersucht, wie Sinneseindrücke vom Gehirn in Verhaltensantworten umgewandelt werden.

Ein erster, großer Schritt ist gemacht. Als nächstes wollen die Neurobiologen herausfinden, wie die Informationen der AF7-Region in die verschiedenen Schwimmbewegungen übersetzt werden.

Publikation

Julia Semmelhack, Joseph Donovan, Tod Thiele, Enrico Kuehn, Eva Laurell, Herwig Baier
A dedicated visual channel for prey detection in larval zebrafish
eLife, 9. Dezember 2014



Artikel kommentieren

Weitere Meldungen

Junge Zebrafische können sozial oder eher introvertiert sein. Welche Unterschiede sich dabei im Gehirn und den Genen der Tiere zeigen, will Johannes Larsch untersuchen.; Bildquelle: MPI für Neurobiologie, Julia Kuhl

Junge Zebrafische sollen Aufschluss über Nervenzellschaltkreise für Sozialverhalten geben

Ein Blick oder eine Geste reichen häufig, um die Stimmung eines anderen einzuschätzen und das eigene Verhalten daran anzupassen. Menschen, die solche sozialen Signale nicht interpretieren können, finden sich in einer Gesellschaft nur schwer zurecht
Weiterlesen

Zieht ein Bild der Umwelt an den Augen vorbei, halten Zebrafische mit Schwimmbewegungen ihre Position. Neurobiologinnen zeigen, über welche Nervenzellbahnen dieses Verhalten koordiniert wird.; Bildquelle: MPI für Neurobiologie, Julia Kuhl

Das Gehirn im Fluss: Nervenzellen im Prätektum berechnen großflächige Bewegungen

Wir sehen mit dem Gehirn – die Augen liefern die Informationen. Doch, wie berechnen die Nervenzellen das Gesehene?
Weiterlesen

Sarah Hartmann (l.) und Prof. Dr. Klaudia Witte von der Universität Siegen haben herausgefunden, dass Zebrafische Infrarotlicht sehr wohl wahrnehmen können.; Bildquelle: Universität Siegen

Wenn für Fischlarven die Nacht zum Tag wird

Biologinnen der Universität Siegen haben herausgefunden, dass Zebrafischlarven Infrarotlicht wahrnehmen können. Das hat weitreichende Konsequenzen für wissenschaftliche Versuche mit diesen Larven
Weiterlesen

Befruchtetes Fischei mit zwei Zellen.; Bildquelle: Stefan Scholz / Helmholtz-Zentrum für Umweltforschung GmbH – UFZ

Zebrafischeier dank Maschinellem Lernen automatisch sortieren

Zebrafische besitzen fast alle Gene, die Menschen auch haben. Daher eignen sich ihre Eier als Modellorganismus für die Gen- und Wirkstoffforschung
Weiterlesen

Seitenansicht einer 6 Tage alten Zebrafischlarve, unter dem Konfokalmikroskop erstellt; Bildquelle: Aristides Arrenberg

Tübinger Neurowissenschaftler stellen selbst entwickeltes Software für Verhaltensstudien an Fischen frei zur Verfügung

Zebrafische gehören erst seit kurzem zu den wichtigsten Tiermodellen der neurowissenschaftlichen Forschung. Laboreinrichtung und Software zur Analyse ihres Verhaltens sind daher oft extrem spezialisiert und teuer
Weiterlesen

Schnitt durch ein Zebrafischherz mit zwei unterschiedlichen Muskelzellschichten (gelb und rot). Die regenerierenden Zellen des gelben Bereichs können auch zum Wiederaufbau der roten Schicht beitragen; Bildquelle: Institut für Anatomie, Universität Bern

Zebrafische können ihr Herz flexibel reparieren

Dass Zebrafische ihr Herz nach Schäden regenerieren können, ist bereits bekannt
Weiterlesen

Der Doktorand Chi-Chung Wu fischt im Labor von Prof. Gilbert Weidinger an der Uni Ulm nach Zebrafischen; Bildquelle: Heiko Grandel / Uni Ulm

Wenn verletzte Herzen der Zebrafische wieder wachsen

Die unter Biologen eigentlich als Zebrabärblinge bekannten Fische sind außerordentlich regenerationsfähig und können nicht nur verletzte Extremitäten nachwachsen lassen
Weiterlesen

Schwanzflosse eines Zebrabärblings. Li.: normale Regeneration der knöchernen Flossenstrahlen; re.: Fehlbildungen der Knochen infolge einer manipulierten Produktion des Signalproteins Sonic Hedgehog; Bildquelle: Professur für Entwicklungsbiologie, Universität Bayreuth.

Wie Zebrafische amputierte Flossen wiederherstellen

Im Gegensatz zum Menschen sind Fische imstande, amputierte Körperteile vollständig wiederherzustellen. Ein prominentes Beispiel ist der Zebrabärbling, der auch als Zebrafisch bezeichnet wird. Seine Schwanzflosse regeneriert nach einer Verletzung innerhalb von drei Wochen vollständig
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen