Was Schnurrhaare so empfindlich macht

(03.05.2018) Eine bestimmte Art von Nervenzellen in der sechsschichtigen Großhirnrinde verleiht Schnurrhaaren von Tieren ihre besondere Empfindlichkeit.

Forscher der Ruhr-Universität Bochum zeigten bei Mäusen, dass das Zusammenspiel von Zellen in der sechsten Schicht des Kortex mit einer anderen Hirnregion, dem Thalamus, entscheidend dafür ist, dass Nager ihre Umgebung mit den Tasthaaren so gut beurteilen können.


Patrik Krieger (links) und François Pauzin interessieren sich für die komplizierten Verarbeitungswege, die es dem Gehirn erlauben, sich an unterschiedliche Situationen anzupassen.

François Pauzin und Prof. Dr. Patrik Krieger von der Bochumer Abteilung Systemische Neurowissenschaften beschreiben die Arbeiten in der Fachzeitschrift Cell Reports vom 1. Mai 2018.

Dynamische Verarbeitungsschleifen

Krieger und Pauzin untersuchten den primären somatosensorischen Kortex, der in der Großhirnrinde die erste Verarbeitungsstation für Informationen des Tastsinns ist. Er ist aus sechs Schichten aufgebaut, die unterschiedliche Zelltypen enthalten.

Die sechste Schicht beinhaltet unter anderem große Nervenzellen, die aufgrund ihrer Form Pyramidenzellen genannt werden. Sie verbinden den Kortex mit dem tieferliegenden Thalamus.

Die Aktivität dieser Kortex-Thalamus-Verarbeitungsschleife ändert sich abhängig vom Verhaltenskontext, wobei die Pyramidenzellen sowohl Thalamus-Neurone als auch andere Neuronen in der Großhirnrinde beeinflussen können.

Wie genau sich dieses dynamische Zusammenspiel auswirkt, untersuchten die Neurowissenschaftler an genetisch veränderten Mäusen, deren Pyramidenzellen sich mit Licht kontrollieren lassen.

Akkurater, aber weniger empfindlich

Aktivierten die Forscher die Pyramidenzellen, so veränderte sich die Spontanaktivität anderer Zellen in der Großhirnrinde und im Thalamus. Das macht das System akkurater. Es schlägt seltener falschen Alarm, sondern reagiert nur auf echte Signale, die durch Reize an den Schnurrhaaren ausgelöst werden.

Allerdings auf Kosten der Empfindlichkeit: In diesem Zustand ist es wahrscheinlicher, dass eine Nervenzelle ein paar der echten Signale nicht mitbekommt.

„Unsere Studie gibt einen Einblick, wie das Gehirn eine seiner fundamentalen Aufgaben wahrnimmt: nämlich aus dem überwältigenden Reiz-Input, den es permanent erhält, die Informationen herauszupicken, die in einer bestimmten Verhaltenssituation am relevantesten sind“, sagt Patrik Krieger.

„Dafür ist das dynamische Zusammenspiel von Verarbeitungsschleifen wie zwischen dem Kortex und dem Thalamus entscheidend.“

Publikation

François Philippe Pauzin, Patrik Krieger: A corticothalamic circuit for refining tactile encoding, in: Cell Reports, 2018, DOI: 10.1016/j.celrep.2018.03.128, https://www.cell.com/cell-reports/pdf/S2211-1247(18)30516-3.pdf



Weitere Meldungen

Ein junger Schimpanse beim Verspeisen des Inhalts von Samenkapseln (Issa-Tal, Tansania).; Bildquelle: R. Drummond-Clarke/GMERC

Schimpansen-Verhalten und -kultur sind in variabler Umwelt am vielfältigsten

Ein internationales Forschungsteam unter der Leitung des Max-Planck-Instituts für evolutionäre Anthropologie und dem Deutschen Zentrum für integrative Biodiversitätsforschung (iDiv) hat den Einfluss der Umweltvariabilität auf das Verhaltensrepertoire von 144 sozialen Gruppen untersucht
Weiterlesen

Dr. Jan Marek Ache ist Spezialist für Bewegungsforschung am Biozentrum der Uni Würzburg; Bildquelle: Kristian Lozina/Uni Würzburg

Die Entschlüsselung von Verhaltensreaktionen

Jan Ache ist das neuste Würzburger Mitglied im Emmy-Noether-Programm. Der Neurowissenschaftler will mit seiner Nachwuchsgruppe neue Impulse in der Bewegungsforschung setzen – auch mit internationalen Partnern
Weiterlesen

Museum für Naturkunde - Leibniz-Institut für Evolutions- und Biodiversitätsforschung

Babysprache bei Tieren

Babysprache oder "motherese" ist ein außergewöhnlicher Fall von sozialer Interaktion zwischen Eltern und Kind und spielt eine entscheidende Rolle beim Spracherwerb von Kleinkindern
Weiterlesen

Oxytocin wandelt somatosensorische Signale in soziales Verhalten um; Bildquelle: Idee: Yan Tang; Grafik: © Shari Ross

Oxytocin wandelt somatosensorische Signale in soziales Verhalten um

Ein in der Fachzeitschrift Nature Neuroscience veröffentlichter Artikel zeigt, dass sogenannte parvozelluläre Oxytocin-Neuronen für die Umwandlung von sensorischen Signalen in soziale Interaktionen verantwortlich sind
Weiterlesen

Menschenaffen wie diese Bonobos haben wie die Menschen grosse Hirne und können daher sehr geschickte Fingerfertigkeiten erlernen.; Bildquelle: Sandra Heldstab/Zoologisch-Botanischer Garten Wilhelma, Stuttgart

Affenarten mit grossen Gehirnen beherrschen schwierigere Handgriffe als solche mit kleinen Hirnen

Doch das Erlernen feinmotorischer Fähigkeiten wie der Werkzeuggebrauch kann dauern: am meisten Zeit beansprucht es bei Menschen
Weiterlesen

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

Die kontinuierliche Beobachtung von Tieren mit Bewegungssensoren könnte die Vorhersage von Erdbeben verbessern
Weiterlesen

Krähe mit Humboldtpinguin; Bildquelle: Daniel Zupanc

Mit neuer APP den Krähen auf der Spur

Im Tiergarten Schönbrunn leben zahlreiche Krähen. Mit der neuen APP „KraMobil“ können nun die Besucherinnen und Besucher mithelfen, diese intelligenten Vögel zu erforschen
Weiterlesen

Beim «Shelling» jagen Delfine einen Fisch ins leere Gehäuse einer Riesenschnecke. Diese befördern sie an die Wasseroberfläche, wo sie den Fisch in ihr Maul schütteln.; Bildquelle: Sonja Wild

Delfine erlernen neues Wissen ähnlich wie Menschenaffen

Delfine erlernen neue Techniken zum Beutefang nicht nur von ihren Müttern, sondern auch direkt von ihren Gefährten. Das zeigt eine Studie der Universität Zürich von mehr als 1'000 Tümmlern in der westaustralischen Shark Bay
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen