Weniger Versuchstiere dank sekundärer Nano-Antikörper

(22.12.2017) Antikörper sind aus biologischer Forschung und medizinischer Diagnostik nicht mehr wegzudenken. Sie herzustellen ist jedoch zeitintensiv, kostspielig und erfordert den Einsatz vieler Tiere.

Wissenschaftler am Max-Planck-Institut (MPI) für biophysikalische Chemie haben nun sogenannte sekundäre Nanobodies entwickelt, die die meistgenutzten Antikörper ersetzen und die Anzahl der Tiere in der Antikörper-Produktion drastisch reduzieren können.

Das ist möglich, weil sich die Sekundär-Nanobodies in praktisch unbegrenzter Menge in Bakterien herstellen lassen. Außerdem haben die sekundären Nanobodies bei vielen zellbiologischen Methoden Vorteile gegenüber ihren Antikörper-Pendants.


Die Forscher gewannen die Nanobody-Baupläne aus einer kleinen Blutprobe von zwei Alpakas und programmierten Bakterien damit, so dass diese die Nanobodies produzieren – ohne weitere Tierbeteiligung.

Als zentraler Teil des Immunsystems schützen Antikörper uns Menschen und andere Wirbeltiere vor Krankheitserregern.

Darüber hinaus sind sie unverzichtbare Werkzeuge in der medizinischen Diagnostik, der Therapie und der Grundlagenforschung – zum Beispiel in der Mikroskopie. Wenn Forscher ein bestimmtes Protein in einer Zelle mikroskopisch untersuchen wollen, markieren sie es mit Antikörpern, die gegen das gewünschte Protein gerichtet sind.

Haben diese sogenannten primären Antikörper an das Zielprotein gebunden, kommen in einem zweiten Schritt sekundäre Antikörper zum Einsatz.

Diese wiederum binden an die primären Antikörper und können etwa mit einem Fluoreszenzfarbstoff gekoppelt sein, der schließlich unter dem Mikroskop leuchtet und so das Protein sichtbar macht.

Die Produktion der sehr vielfältigen Primär-Antikörper erfolgt traditionell in kleinen Säugern wie Mäusen oder Kaninchen: Die Tiere werden zunächst mit einem gereinigten Protein per Spritze immunisiert – vergleichbar mit einer Schutzimpfung beim Menschen. Daraufhin bildet das Immunsystem der Tiere Antikörper gegen das Protein. Die Antikörper werden schließlich aus dem Blut der Tiere gesammelt und aufbereitet.

Da tausende Labors weltweit Antikörper nutzen und fast alle diese Anwendungen sekundäre Antikörper erfordern, ist der Bedarf für letztere enorm. Deshalb sind für die Sekundär-Antikörper-Produktion nicht nur viele, sondern auch große Tiere wie Esel, Ziegen oder Schafe nötig, was ein ethisches Problem darstellt.

Sekundäre Nanobodies lassen sich in Bakterien herstellen

Forscher am MPI für biophysikalische Chemie in Göttingen haben jetzt eine nachhaltige Alternative vorgestellt, die Sekundär-Antikörper gegen primäre Antikörper aus Mäusen und Kaninchen komplett ersetzen und somit die Zahl benötigter Tiere für die Antikörper-Herstellung drastisch reduzieren kann – dank spezieller Nanobodies.

Nanobodies sind Fragmente besonders einfach aufgebauter Mini-Antikörper aus Kamelen und ihnen verwandten Arten wie Alpakas. „Wir haben Sekundär-Nanobodies entwickelt, die sich – ähnlich wie Bier in einem Fermenter – mikrobiologisch in beliebiger Menge produzieren lassen“, erklärt Dirk Görlich, Direktor am MPI für biophysikalische Chemie und Leiter des Projekts.

Mit herkömmlichen Antikörpern ist diese Herstellungsart aufgrund ihrer komplexen Struktur nicht möglich.

„Die Qualitätsanforderungen für Sekundär-Antikörper sind sehr hoch, weil sie nur Primär-Antikörper aus einer einzigen Tierart und keinerlei Strukturen in den zu analysierenden Zellen oder medizinischen Proben erkennen dürfen. Das Problem war also, Baupläne für wirklich perfekte Sekundär-Nanobodies in die Hände zu bekommen.

Begonnen haben wir mit einer Vielzahl von Bauplan-Varianten, die wir aus einer kleinen Menge Blut von zwei immunisierten Alpakas extrahiert haben. Durch ein sogenanntes Phage-Display-Verfahren haben wir dann die besten Varianten herausgefischt und mit diesen schließlich Bakterien für die Nanobody-Produktion programmiert“, erläutert Tino Pleiner, Erstautor der jetzt im Journal of Cell Biology erschienenen Arbeit.

Nanobodies wurden erstmals 1993 von einem belgischen Labor beschrieben. Seitdem versuchen Forscher, sie sich für ihre Arbeit im Labor zunutze zu machen. Speziell der Ersatz von Sekundär-Antikörpern ist allerdings alles andere als trivial.

Ein Grund dafür ist die Größe der Nanobodies: Sie sind zehnfach kleiner als normale Antikörper. Daher bieten sie weit weniger Fluoreszenzfarbstoff-Molekülen Platz als konventionelle Antikörper und sollten im Mikroskop viel weniger hell leuchten als diese.

„Unsere ersten Versuche mit Sekundär-Nanobodies waren in der Tat sehr enttäuschend und lieferten nur dunkle und verrauschte Bilder. Wir haben aber nicht aufgegeben, sondern die beiden Alpakas nach einer einjährigen Pause ein weiteres Mal immunisiert und damit ihr Immunsystem dazu gebracht, die Nanobodies weiter zu verbessern.

Die Evolution im Reagenzglas, eine spezielle Kopplungs-Strategie für die Fluoreszenzfarbstoffe und der gleichzeitige Einsatz mehrerer Nanobodies taten dann das Übrige“, berichtet Görlich über anfängliche Schwierigkeiten. Jetzt können die Nanobodies in Sachen Signalstärke mit herkömmlichen Antikörpern mithalten.

Bessere Detailschärfe in der Lichtmikroskopie

Im Labor haben Nanobodies darüber hinaus sogar Vorteile gegenüber sekundären Antikörpern. „Mit höchstauflösender Fluoreszenzmikroskopie beispielsweise kann man theoretisch zelluläre Strukturen im Bereich von wenigen Nanometern optisch voneinander trennen.

Doch die dabei verwendeten konventionellen Antikörper haben selbst eine Größe von 15 Nanometern. Das lässt das Bild wieder verschwimmen. Nanobodies hingegen sind mit etwa 3 Nanometern deutlich kleiner, was eine höhere Bildschärfe erlaubt“, so Pleiner.

„Neben der Mikroskopie haben wir die sekundären Nanobodies bereits mit anderen Methoden getestet und die Ergebnisse sind sehr vielversprechend“, betont Görlich. „Wir erwarten, dass unsere Nanobodies die traditionellen Sekundär-Antikörper aus Eseln, Ziegen oder Schafen in vielen Anwendungen ersetzen werden.“

Publikation

Tino Pleiner, Mark Bates, Dirk Görlich: A toolbox of anti-mouse and rabbit IgG secondary nanobodies. Journal of Cell Biology, doi: 10.1083/jcb.201709115 (2017



Artikel kommentieren

Weitere Meldungen

Theresia Bauer, Wissenschaftsministerin des Landes BadenWürttemberg; Bildquelle: NMI

Tübingen wird zum Zentrum für Tierversuchsalternativen

Medizinprodukte und Medikamente auf ihre Wirksamkeit und Nebenwirkungen zu testen, erfolgt oft mit Tierversuchen. Ihre ethische Vertretbarkeit ist stark umstritten
Weiterlesen

Rund 60 internationale Experten trafen sich in Würzburg, um über den aktuellen Stand bei der Entwicklung von zuverlässigen zellbasierten Alternativen zu Tierversuchen zu beraten.; Bildquelle: M.-L. Righi, Fraunhofer ISC

Neue Wege zur Vermeidung von Tierversuchen – Human 3D Tissue Models Conference in Würzburg

Rund 60 internationale Experten trafen sich am 7. November im Fraunhofer-Institut für Silicatforschung ISC in Würzburg
Weiterlesen

IfADo-Doktorandin Wiebke Albrecht im Labor.; Bildquelle: Mühle/IfADo

Tierschutzforschungspreis 2019 für IfADo-Forschende

Wiebke Albrecht vom Leibniz-Institut für Arbeitsforschung an der TU Dortmund (IfADo) erhält den Tierschutzforschungspreis 2019 des Bundesministeriums für Ernährung und Landwirtschaft
Weiterlesen

Dr. Sabine Bischoff leitet die Stabstelle Tierschutz des Universitätsklinikums Jena, deren Projekt CIRS-LAS mit dem Thüringer Tierschutzpreis ausgezeichnet wird.; Bildquelle: Michael Szabó/UKJ

Fehlertransparenz für mehr Tierwohl

Die Fehlerdatenbank für Tierversuche der Stabstelle Tierschutz am Universitätsklinikum Jena erhält den Thüringer Tierschutz-Preis
Weiterlesen

Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Workshop zu untypischen Tiermodellen

Pythons, Tasmanische Teufel und Nacktmulle sind alles andere als typische Versuchstiere. Doch vielleicht können gerade sie große Fragen der Biomedizin beantworten
Weiterlesen

Deutsche Forschungsgemeinschaft (DFG)

Tierexperimentelle Forschung: Zwischen Tierschutz und wissenschaftlicher Qualität

In der tierexperimentellen Forschung gilt es, höchste wissenschaftliche Qualität und hohe Tierschutzstandards gleichermaßen sicherzustellen, wobei es in der Praxis zu Wechselwirkungen und Spannungen kommen kann
Weiterlesen

Leberzellen in der Kulturschale: In Grün der Zellkörper der Leberzelle, in Blau die Zellkerne, in Rot das Gallenkanälchen, in welches die Leberzelle Gallensalze und Fremdstoffe ausschüttet.; Bildquelle: IfADo

Tierversuche: Die Alternative aus der Kulturschale

Bis ein Medikament auf den Markt kommt, vergehen Jahre, werden hohe Millionenbeträge ausgegeben und finden viele Tierversuche statt. Fehlschläge während der Entwicklung sind keine Seltenheit
Weiterlesen

Tierhaltung im DKFZ; Bildquelle: Tobias Schwerdt/DKFZ

Symposium „Tierexperimentelle Forschung: Quo vadis?

Tierversuche in der Forschung werden in der Öffentlichkeit kontrovers und emotional diskutiert – die Wissenschaft selbst geht bei dem Thema weitestgehend in Deckung
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen