Die Entschlüsselung von Verhaltensreaktionen

(07.09.2020) Jan Ache ist das neuste Würzburger Mitglied im Emmy-Noether-Programm. Der Neurowissenschaftler will mit seiner Nachwuchsgruppe neue Impulse in der Bewegungsforschung setzen – auch mit internationalen Partnern.

Menschen weichen einem heranrasenden Auto reflexartig aus, Mücken einer nahenden Fliegenklatsche. Um auf der Welt überleben zu können, müssen Mensch und Tier in der Lage sein, ihr Verhalten schnell und flexibel an unterschiedliche Situationen anzupassen. Die Schlüsselrolle spielt dabei das Gehirn: Es sucht blitzschnell die passende Antwort auf eine Situation heraus, und der Körper reagiert entsprechend.


Dr. Jan Marek Ache ist Spezialist für Bewegungsforschung am Biozentrum der Uni Würzburg

Doch die neuronale Grundlage für solche Reaktionen ist kaum erforscht. Neurowissenschaftler Jan Marek Ache von der Julius-Maximilians-Universität (JMU) Würzburg will hier mit seinem Team neue Akzente setzen – und wurde jetzt dafür in das Emmy-Noether-Programm der Deutschen Forschungsgemeinschaft (DFG) aufgenommen.

Ache leitet seit Ende 2019 eine Nachwuchsgruppe am Lehrstuhl für Neurobiologie und Genetik des JMU-Biozentrums. „Die Aufnahme in das Emmy-Noether-Programm eröffnet mir und meinem Team ganz neue Möglichkeiten. Für diese Chance bin ich außerordentlich dankbar“, erklärt Ache.

In den kommenden sechs Jahren wird seine Arbeit mit rund zwei Millionen Euro von der DFG gefördert. Das Programm richtet sich an herausragende Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftler verschiedener Disziplinen.

Zwei Schwerpunkte für die Erforschung des Nervensystems

Ache und sein Team haben sich auf Bewegungskontrolle und „Action Selection“ spezialisiert. Sie erforschen die neuronalen Mechanismen, die es dem Nervensystem erlauben, externe Einflüsse flexibel zu verarbeiten, um für eine Situation passende Verhaltensreaktionen hervorzurufen.

Als Modellsystem nutzt das Team dafür die Fruchtfliege und arbeitet vor allem mit elektrophysiologischen und optogenetischen Methoden – das bedeutet, es misst die Aktivität einzelner Nervenzellen mit winzigen Elektroden oder manipuliert diese mit Lichtpulsen, um einzelne Nervenzellen an- oder auszuschalten.

Mit den Mitteln aus dem Emmy-Noether-Programm wird Ache sein Team nun vergrößern und die Forschung vertiefen. Zwei Bereiche stehen dabei künftig im Vordergrund: Im Bereich Bewegungskontrolle und „Action Selection“ soll die Forschung am Nervensystem intensiviert werden.

Im zweiten Schwerpunkt will die Nachwuchsgruppe die Regulation der Insulinausschüttung sowie die Auswirkungen von Insulin auf das Nervensystem näher untersuchen.

Teilnahme an internationalem Projekt

Ein weiteres internationales Forschungsprojekt wird Ache in den nächsten fünf Jahren bearbeiten: Seit August ist seine Nachwuchsgruppe Teil des „NeuroNex“-Konsortiums C3NS, das sich mit Kommunikation, Koordination und Kontrolle in neuromechanischen Systemen befasst.

Das Projekt wird getragen von der National Science Fundation (USA), dem Medical Research Council (Großbritannien), dem Fonds de Recherche du Québec und dem Canadian Institutes of Health Research (beides Canada) sowie der DFG. Die DFG stellt Ache zu diesem Zweck weitere 660.000 Euro zur Verfügung.

Ache wird dabei mit Forscherinnen und Forschern der Universitäten Köln und Jena sowie mehreren internationalen Forschungsgruppen zusammenarbeiten. Koordiniert wird das Projekt an der Case Western Reserve University (USA).

Hier sollen die Gehirnfunktionen von Insekten, Mollusken und Wirbeltieren untersucht werden, und es wird versucht, die dort vorliegenden neuromechanischen Prinzipien auf Roboter zu übertragen.

Das Ziel: ein besseres Verständnis darüber, wie das Nervensystem die Steuerung von Bewegungen orchestriert und die Entwicklung besserer Roboter, die natürliche Bewegungsmuster produzieren können.

Deutschland, Großbritannien, USA und zurück

Jan Marek Ache hat an der Universität zu Köln Biologie studiert und erlangte dort seinen Bachelor- und Master-Abschluss. Für seine Master-Arbeit forschte er an der University of Leicester (Großbritannien).

Anschließend promovierte er an der Universität Bielefeld und spezialisierte sich dabei auf Elektrophysiologie und biologische Kybernetik. Als Postdoc forschte er am Janelia Research Campus des Howard Hughes Medical Institute (USA) und spezialisierte sich dort auf neurogenetische Methoden und Verhaltenssteuerung in Drosophila.

Seit etwa einem Jahr leitet er die Nachwuchsgruppe Ache am Biozentrum der JMU.


Weitere Meldungen

Schimpansen; Bildquelle: Liran Samuni, Taï Chimpanzee Project

Auch Schimpansen leiden ein Leben lang, wenn sie im Kindesalter die Mutter verlieren

Der Tod eines Elternteils ist für ein Kind traumatisch und Waisenkinder leiden häufig für den Rest ihres Lebens unter diesem Verlust – ein verzögertes Wachstum und gesundheitliche Probleme können die Folgen sein
Weiterlesen

Ein junger Schimpanse beim Verspeisen des Inhalts von Samenkapseln (Issa-Tal, Tansania).; Bildquelle: R. Drummond-Clarke/GMERC

Schimpansen-Verhalten und -kultur sind in variabler Umwelt am vielfältigsten

Ein internationales Forschungsteam unter der Leitung des Max-Planck-Instituts für evolutionäre Anthropologie und dem Deutschen Zentrum für integrative Biodiversitätsforschung (iDiv) hat den Einfluss der Umweltvariabilität auf das Verhaltensrepertoire von 144 sozialen Gruppen untersucht
Weiterlesen

Spiel mit Menschen verbessert Lernerfolg von Hunden langfristig; Bildquelle: Nadja Affenzeller

Spiel mit Menschen verbessert Lernerfolg von Hunden langfristig

Erregende und emotionale Situationen – wie das Spiel des Menschen mit dem Hund – verbessern die kognitive Leistung und die Einprägsamkeit von Erlerntem. Das konnte kürzlich eine Studie der Vetmeduni Vienna in Kollaboration mit der University of Lincoln (UK) zeigen
Weiterlesen

Oxytocin wandelt somatosensorische Signale in soziales Verhalten um; Bildquelle: Idee: Yan Tang; Grafik: © Shari Ross

Oxytocin wandelt somatosensorische Signale in soziales Verhalten um

Ein in der Fachzeitschrift Nature Neuroscience veröffentlichter Artikel zeigt, dass sogenannte parvozelluläre Oxytocin-Neuronen für die Umwandlung von sensorischen Signalen in soziale Interaktionen verantwortlich sind
Weiterlesen

Menschenaffen wie diese Bonobos haben wie die Menschen grosse Hirne und können daher sehr geschickte Fingerfertigkeiten erlernen.; Bildquelle: Sandra Heldstab/Zoologisch-Botanischer Garten Wilhelma, Stuttgart

Affenarten mit grossen Gehirnen beherrschen schwierigere Handgriffe als solche mit kleinen Hirnen

Doch das Erlernen feinmotorischer Fähigkeiten wie der Werkzeuggebrauch kann dauern: am meisten Zeit beansprucht es bei Menschen
Weiterlesen

Goldbandpipra; Bildquelle: Elisa Perinot

Goldbandpipra: Verhaltensflexibilität eines Athleten

Goldbandpipra (Manacus vitellinus) besitzen die Fähigkeit, ihre motorisch komplexen Paarungstänze an plötzlich auftretende Umweltveränderung anzupassen
Weiterlesen

Dominantes (links) und untergeordnetes (rechts) Männchen des Buntbarsches Astatotilapia burtoni (Burtons Maulbrüter).; Bildquelle: MPI f. Verhaltensbiologie/ Jordan Lab

Dominanz verringert den Einfluss in einer Gruppe

Von untergeordneten Männchen geführte Fischgruppen schneiden besser ab als Gruppen, die von dominanten und aggressiven Männchen geführt werden
Weiterlesen

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

Die kontinuierliche Beobachtung von Tieren mit Bewegungssensoren könnte die Vorhersage von Erdbeben verbessern
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen