Nervenzellen im Krähengehirn ordnen Bilder richtig zu

(23.11.2015) Während des Lernens entstehen Reaktionsmuster, die relevante Zusammenhänge anzeigen ‒ ähnlich wie beim Säugetier

Krähen sind dafür bekannt, dass sie schnell Zusammenhänge herstellen können: nur so können sie sich erfolgreich in unseren Städten zurecht finden und lernen, wie man mit Ampeln umgeht, wer ihnen Nüsse mitbringt, und welche Menschen man besser meiden sollte.


Rabenkrähen lernten, beliebige Bilder in zwei Gruppen einzuteilen. Einzelne Nervenzellen reagierten auf alle Bilder, die in eine bestimmte Gruppe gehörten ‒ unabhängig vom Bildmotiv
Wie das Gehirn der Krähen solche Lernaufgaben meistert, das konnten jetzt Forscher der Universität Tübingen in einer Studie zeigen, die im Fachjournal PNAS (Proceedings of the National Academy of Sciences of the United States of America) erschienen ist.

In der Aufgabe ging es darum, beliebige Bilder in zwei verschiedene Gruppen einzuteilen – manche Bilder waren der Farbe „blau“ zugeordnet, andere der Farbe „rot“. Nachdem sie einen Vogel gesehen hatten, mussten die Krähen z.B. ein rotes Quadrat mit dem Schnabel berühren, wohingegen ein Blumenbild die Auswahl eines blauen Quadrates erforderte.

Zunächst mussten die Krähen durch Ausprobieren/Raten lernen, welche Bilder zu welcher Farbe gehörten. Durch Belohnung für jede richtige Antwort lernten die Krähen innerhalb weniger Wiederholungen die passenden Zusammenhänge für jedes neue Bild.

Durch die gleichzeitige Messung von Hirnströmen konnten die Forscher zeigen, was sich während des Lernens im Gehirn der Krähen abspielt. Einzelne Nervenzellen reagierten unterschiedlich auf die verschiedenen Bilder.

Dabei gab es Zellen, die mit ihrer Aktivität die Bilder je nach der erforderlichen Antwort gruppierten: Eine der Zellen antwortete stark auf alle Bilder der Gruppe „blau“, eine andere auf Bilder der Gruppe „rot“, trotz unterschiedlicher Bildmotive.

Die Zellen speicherten also nicht die Bildmotive im Arbeitsgedächtnis, sondern gleich die mit den Bildern assoziierten Antwortgruppen. Dabei spielte es keine Rolle, ob die Krähen die richtige Antwort erst erlernt hatten, oder ob sie die Bilder schon länger kannten.

Den Neurobiologen gelang es, einzelne Nervenzellen über den Lernprozess zu verfolgen. So konnten sie zeigen, dass sich diese Selektivität innerhalb weniger Minuten ausbildet: „Es ist schon erstaunlich, wie schnell die Krähen diese Assoziationen lernen können – und wie man den Nervenzellen beim Lernen zusehen kann“, sagt Erstautorin Dr. Lena Veit.

„Während des Ratens reagierten viele Zellen kaum auf ein unbekanntes Bild, aber nach wenigen Versuchen, sobald die Krähe die richtige Antwort gelernt hatte, zeigten sie für das gleiche Bild die richtige Antwort an.“

Diese Art der Speicherung im Arbeitsgedächtnis macht offensichtlich Sinn: man muss sich weniger Details merken, und ist gleich auf die richtige Antwort vorbereitet. „Bisher kannte man diese Art der Verarbeitung nur bei Affen“, sagt Projektleiter Professor Andreas Nieder.

„Es verwundert, dass wir ähnliche Lernstrategien in den unterschiedlich aufgebauten Endhirnen von Vögeln und Säugetieren finden“.

Die Forscher fanden aber auch kleine Unterschiede zum Lernen bei Säugetieren. „Die große Frage ist nun, was der unterschiedliche Aufbau des Gehirns für das Zusammenspiel verschiedener Hirnregionen beim Lernen bedeutet.“

Publikation

Lena Veit, Galyna Pidpruzhnykova, Andreas Nieder. Associative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows. Proceedings of the National Academy of Sciences of the USA. Online Early Edition, Nov 23-27, 2015.
www.pnas.org/content/early/recent



Weitere Meldungen

Ruhr-Universität Bochum

Vogelhirne weisen eine überraschende Organisation auf

Manche Vögel können erstaunliche kognitive Leistungen vollbringen – dabei erscheint ihr Gehirn im Vergleich mit dem von Säugetieren ziemlich unorganisiert
Weiterlesen

Verschiedene Nervensignale im Stirnlappen der Brillenblattnasen-Fledermaus Carollia perspicillata (links) gehen Kommunikationslauten (oben) und Lauten zur Echo-Ortung (unten) voran.; Bildquelle: Julio C. Hechavarria, Goethe Universität Frankfurt

Rhythmische Nervensignale bestimmen Laute von Fledermäusen

Ein bestimmter neuronaler Schaltkreis im Gehirn kontrolliert bei Fledermäusen die Lautäußerungen der Tiere. Dies haben jetzt Biologen der Goethe-Universität Frankfurt herausgefunden
Weiterlesen

Menschenaffen wie diese Bonobos haben wie die Menschen grosse Hirne und können daher sehr geschickte Fingerfertigkeiten erlernen.; Bildquelle: Sandra Heldstab/Zoologisch-Botanischer Garten Wilhelma, Stuttgart

Affenarten mit grossen Gehirnen beherrschen schwierigere Handgriffe als solche mit kleinen Hirnen

Doch das Erlernen feinmotorischer Fähigkeiten wie der Werkzeuggebrauch kann dauern: am meisten Zeit beansprucht es bei Menschen
Weiterlesen

Mikroskopische Aufnahme eines Hirnhälften-Schnitts eines 101 Tage alten ARHGAP11B-transgenen Weißbüschelaffen-Fötus. Die Zellkerne sind weiß dargestellt. Pfeile zeigen einen Sulcus und einen Gyrus an.; Bildquelle: Max-Planck-Institut für molekulare Zellbiologie und Genetik (MPI-CBG)

Menschliches Gehirngrößen-Gen vergrößert auch Gehirn von Affen

Dresdner und japanische Forscher zeigen, dass ein menschenspezifisches Gen einen größeren Neokortex beim Weißbüschelaffen hervorruft
Weiterlesen

Prof. Dr. Peter Hier; Bildquelle: Ingo Rappers / HIH

Affen reagieren auf Animationen im Hollywood-Stil

Rhesusaffen akzeptieren einen naturalistisch aussehenden Affen-Avatar als Artgenossen und begegnen ihm mit ihrer artspezifischen Mimik. Unrealistische Avatare ignorieren sie dagegen
Weiterlesen

Max-Planck-Institut für Kognitions- und Neurowissenschaften

Affen kommunizieren, Menschen haben Sprache

Obwohl die Tiere hochkomplexe Fähigkeiten haben, Sprache können sie nicht. Welche Hirnstrukturen und Gene beim Menschen den Unterschied machen, will Angela D. Friederici vom MPI CBS herausfinden
Weiterlesen

Alexander Hecker M.Sc. und Prof. Dr. Stefan Schuster, Lehrstuhl für Tierphysiologie an der Universität Bayreuth.; Bildquelle: Christian Wißler

Bayreuther Biologen ergründen die Rolle der Mauthnerzellen in tierischen Gehirnen

Die Gehirne der meisten Fisch- und Amphibienarten enthalten ein Paar auffällig großer Nervenzellen. Es sind die größten Zellen, die in tierischen Gehirnen vorkommen
Weiterlesen

(links) 3D-Montage eines Mäusegehirns: repräsentative Schnitte sind aus einer lückenlosen Serie so angeordnet, dass auf der linken Hemisphäre ein Referenzbild aus einem Hirnatlas und auf der rechten Hemisphäre der genau dazu passe; Bildquelle: Georg Hafner

Tollwut- und Schnupfenviren helfen Neurowissenschaften

Ein „entschärftes“ Tollwutvirus hilft Göttinger Forschenden des Sonderforschungsbereichs 889 „Zelluläre Mechanismen sensorischer Verarbeitung“: gehirnweite Vernetzung von molekular definierten Nervenzellen wird sichtbar
Weiterlesen