Wie Neuronen abwechselndes Rufen bei Zebrafinken steuern

(10.01.2020) Zebrafinken wechseln sich beim Kommunizieren ab, ganz ähnlich wie Menschen das auch im Gespräch tun.

Forscher*innen vom Max-Planck-Institut für Ornithologie in Seewiesen haben nun herausgefunden, was dabei im Vogelgehirn vorgeht. Sie konnten sowohl die Nervenzellen identifizieren, die am Auslösen eines Rufes beteiligt sind, als auch jene, die vor einem Ruf die Aktivität ihrer Nachbarzellen hemmen und damit kontrollieren, wann gerufen wird. Eine Störung der Aktivität beider Nervenzelltypen führte jeweils zu einer deutlichen Beeinträchtigung der Kommunikation.


Koordiniert miteinander zu kommunizieren ist bei Zebrafinken sehr wichtig, die Tiere leben in größeren Schwärmen zusammen. Hier eine Gruppe von Männchen.

„Ich bin ich und du bist du. Wenn ich rede, hörst du zu. Wenn du redest, bin ich still, weil ich dich verstehen will.“ Diese grundlegende Regel der Kommunikation lernen wir bereits im Kindergartenalter und halten daher die Fähigkeit, sich mit dem Gegenüber beim Sprechen abzuwechseln, für selbstverständlich.

Diese Leistung erfordert jedoch aktive Zurückhaltung und die Verzögerung einer Antwort, bis die andere Person mit dem Sprechen aufhört. In anderen Worten: Was man hört, beeinflusst nicht nur, was man sagt, sondern auch, wann man es sagt.

Andere Tiere haben ebenfalls die Fähigkeit, Lautäußerungen koordiniert auszutauschen, die zugrundeliegenden neuronalen Mechanismen hierfür waren jedoch bislang noch nicht bekannt.

Sowohl Menschen als auch Singvögel besitzen spezialisierte neuronale Schaltkreise, die für das Hören verantwortliche Gehirnareale mit den Sprachzentren verbinden. Somit ist denkbar, dass es auch Parallelen bei der Sprachsteuerung gibt, welche die Kommunikation koordiniert und so ein gegenseitiges Unterbrechen vermeidet.

Jonathan Benichov und Daniela Vallentin vom Max-Planck-Institut für Ornithologie haben diese Theorie nun an Zebrafinken, kleinen australischen Singvögeln, untersucht.

Den arttypischen Gesang lernen nur die Männchen, allerdings nutzen sowohl Männchen als auch Weibchen einfache, angeborene Rufe um sich in der Gruppe zu verständigen. Dieses Verhalten konnten die Wissenschaftler*innen nutzten, um die neuronalen Grundlagen der Sprachsteuerung zu erforschen.

Bei Singvögeln ist vor allem eine Gehirnregion namens HVC für das Erlernen und die Produktion von Lautäußerungen wichtig. „Wir haben daher vermutet, dass wir in diesem sogenannten Gesangskontrollzentrum nach der Erklärung dafür suchen müssen, wie das abwechselnde Rufen koordiniert wird“, sagt Jonathan Benichov, Erstautor der Studie.

So agiert diese Gehirnregion zum Beispiel wie ein Metronom, um das Tempo der aufwändigen Balzgesänge der Männchen zu kontrollieren.

Benichov und Vallentin konnten nun nachweisen, dass die Neuronen in dieser Gehirnregion auch eine wichtige Rolle spielen bei der zeitlichen Koordination der für das soziale Zusammenleben wichtigen angeborenen Rufe. In diesem Fall kann man sich die Gehirnregion in etwa wie eine Ampel vorstellen, die festlegt, wann gerufen wird und wann damit gewartet werden muss.

Mit Hilfe winziger Elektroden, etwa 50 Mal dünner als ein menschliches Haar, sowie am Kopf angebrachter Miniatursender konnten die Wissenschaftler*innen die Aktivität einzelner an diesem Prozess beteiligter Nervenzellen messen, ohne das natürliche Verhalten der Tiere zu beeinflussen.

So konnten Vorgänge im Gehirn der sich in der Gruppe frei bewegenden Tiere während der Kommunikation mit echten Partnern sowie auch die Reaktion auf vorgespielte Rufe anderer Artgenossen aufgezeichnet und ausgewertet werden.

Einige Nervenzellen wurden bereits wenige Millisekunden vor der eigentlichen Lautäußerung eines Tieres aktiv, ein Hinweis dafür, dass diese Neuronen am Auslösen der Rufe beteiligt waren.

Darüber hinaus fanden die Forscher*innen andere Nervenzelltypen, die ihre Aktivität schon früher als die anderen Zellen vor der Lautäußerung steigerten.

„Deshalb haben wir auch diesen anderen Zelltyp untersucht, dessen Aufgabe es ist, Nachbarzellen ruhigzustellen“, erklärt Daniela Vallentin, Leiterin der Forschungsgruppe “Neuronale Grundlagen vokaler Kommunikation“.

Dabei stellte sich heraus, dass diese hemmenden Zellen ihre Signale bereits vor den Neuronen, die die Rufe letztendlich auslösen, senden. Sie könnten somit also kontrollieren, wann genau das rufauslösende Signal gesendet wird und das Tier zu rufen beginnt; beziehungsweise beginnt, auf Rufe zu reagieren.

Um diese Annahme zu überprüfen, wurden die Signale dieser hemmenden Zellen von den Wissenschaftler*innen chemisch blockiert. Die für das Auslösen der Rufe verantwortlichen Nachbarzellen produzierten daraufhin früher stärkere Signale, was zu einer ungewöhnlich schnellen Reaktion dieser Vögel auf ihre Partner und sogar zum unbeabsichtigten „Dazwischen-Zwitschern“ führte.

Publikation

Jonathan I. Benichov, Daniela Vallentin (2020). Inhibition within a premotor circuit controls the timing of vocal turn-taking in zebra finches. Nature Communications, veröffentlicht am 10.01.2020 (DOI: 10.1038/s41467-019-13938-0)


Weitere Meldungen

Verschiedene Nervensignale im Stirnlappen der Brillenblattnasen-Fledermaus Carollia perspicillata (links) gehen Kommunikationslauten (oben) und Lauten zur Echo-Ortung (unten) voran.; Bildquelle: Julio C. Hechavarria, Goethe Universität Frankfurt

Rhythmische Nervensignale bestimmen Laute von Fledermäusen

Ein bestimmter neuronaler Schaltkreis im Gehirn kontrolliert bei Fledermäusen die Lautäußerungen der Tiere. Dies haben jetzt Biologen der Goethe-Universität Frankfurt herausgefunden
Weiterlesen

Museum für Naturkunde Berlin

Nachweis rhythmischer Muster in Lautäußerungen von Fledermäusen und Pottwalen

Forscherinnen vom Museum für Naturkunde Berlin publizieren in der Fachzeitschrift „PLOS Computational Biology“ den Nachweis rhythmischer Muster in Lautäußerungen von Fledermäusen und Pottwalen
Weiterlesen

Hausmaus (Mus musculus musculus); Bildquelle: Bettina Wernisch/Vetmeduni Vienna

Schöne Stimmen machen Mäuse sexy

Die Männchen vieler Arten verwenden Balzrufe, um potenzielle Partner anzuziehen – auch Hausmäuse
Weiterlesen

Junge Zebrafinken imitieren den Gesang eines ausgewachsenen Finken, um später Weibchen anzulocken.; Bildquelle: Richard Hahnloser, ETH/UZH

Wie Zebrafinken ihren Balzgesang lernen

Komplexe Lernprozesse wie Sprechen oder Singen laufen nach ähnlichen Mustern ab
Weiterlesen

Das mobile akustische Sensorsystem erfasst automatisch Tierlaute in der Umwelt. Mobil und in Echtzeit werden die Daten ausgewertet und grafisch aufbereitet.; Bildquelle: Hannes Kalter/ Fraunhofer-Institut für Digitale Medientechnologie

Zuhören ist die DeViSe: System erhebt Tierlaute

Bevor eine Windkraftanlage errichtet oder eine Naturschutzmaßnahme umgesetzt wird, informieren sich die Planer über die Tier- und Pflanzenwelt vor Ort
Weiterlesen

Angela Stöger-Horwath und Christopher Gorofsky ; Bildquelle: Daniel Zupanc

KognitionsbiologInnen der Universität Wien erforschen Lautkommunikation von Elefanten

Im Rahmen eines FWF-Projekts untersuchen KognitionsbiologInnen der Universität Wien die frühe Mutter-Kind-Kommunikation des kürzlich geborenen Elefantenbaby Kibali und seiner Mutter Numbi im Tiergarten Schönbrunn
Weiterlesen

Kolkraben, die an einer Futterstelle auf Probleme stoßen, verwenden eigene Rufe, um weitere Raben herbeizurufen.; Bildquelle: Georgine Szipl

Futter-assoziierte Laute: Was ein "Haa" über eine Futterstelle verrät

Futterrufe von Kolkraben geben Aufschluss über Alter und Geschlecht
Weiterlesen

Das Lautrepertoire der Bonobos ist eine ganze Oktave höher angesiedelt als bei Schimpansen.; Bildquelle: Cédric Girard-Buttoz, LuiKotale, D.R. Kongo

Bonobos: Menschenaffen mit "hohen Tönen"

Wie groß ein Tier oder eine Person ist, kann man in der Regel nicht nur sehen, sondern auch hören, denn mit steigender Körpergröße nimmt die Tonhöhe ab
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen