Gehirnasymmetrie auch bei Menschenaffen

(16.02.2020) Die funktionelle Trennung der beiden Gehirnhälften und die damit verbundene Gehirnasymmetrie sind beim Menschen gut dokumentiert. Über die Gehirnasymmetrie unserer nächsten lebenden Verwandten, den Menschenaffen, war bisher jedoch wenig bekannt.

Mithilfe von Abdrücken des Gehirns auf der Innenseite des Schädelknochens widerlegen Philipp Mitteröcker von der Universität Wien und Wissenschafter*innen vom Max-Planck-Institut in Leipzig jetzt die gängige Lehrmeinung, die menschliche Gehirnasymmetrie sei einzigartig: Bei Schimpansen, Gorillas und Orang-Utans fand sich das gleiche Muster; beim Menschen variiert dieses aber stärker. Die Studie erscheint in Science Advances.


Menschen, Schimpansen, Gorillas und Orang-Utans haben unterschiedlich aussehende Schädelknochen und Gehirne. Aber sie haben das gleiche Asymmetriemuster wie man aus der unteren Reihe erkennen kann

Die linke und rechte Seite unseres Gehirns sind auf bestimmte kognitive Fähigkeiten – beispielsweise Sprache – spezialisiert.

Die beiden Hemisphären unterscheiden sich zudem in der Gehirnanatomie, der Verteilung der Nervenzellen, ihrer Konnektivität und der Neurochemie. Asymmetrien der äußeren Gehirnform sind sogar an der Innenseite von Schädelknochen sichtbar.

Gehirnasymmetrie wird üblicherweise als entscheidend für die Funktion des menschlichen Gehirns und die Kognition interpretiert. Vergleichsstudien unter Primaten sind jedoch selten, und es ist nicht bekannt, welche Aspekte der Gehirnasymmetrie wirklich typisch menschlich sind.


Menschen, Schimpansen, Gorillas und Orang-Utans haben unterschiedlich aussehende Schädelknochen und Gehirne. Aber sie haben das gleiche Asymmetriemuster wie man aus der unteren Reihe erkennen kann.

Bisher nahmen Wissenschafter*innen an, dass sich viele Aspekte der Gehirnasymmetrie erst nach der Trennung der menschlichen Abstammungslinie von der Linie unserer nächsten lebenden Verwandten, den Schimpansen, entwickelt haben.

Erstmals Gehirnasymmetrien von Menschen und Menschenaffen verglichen

Forscher*innen der Universität Wien und des Max-Planck-Instituts für evolutionäre Anthropologie haben in einer neuen Studie das Ausmaß und das Muster der Asymmetrie der Schädelknochen von Menschen und Menschenaffen statistisch analysiert.

"Gehirne von Menschenaffen sind nur selten für Studien verfügbar, aber wir haben Methoden entwickelt, um Daten zur Gehirnasymmetrie aus Schädeln zu extrahieren, die in größerer Zahl zur Verfügung stehen. Das hat unsere Studie überhaupt erst möglich gemacht", sagt Simon Neubauer vom Max-Planck-Institut.

Menschenaffen haben ein ähnliches Asymmetriemuster

Das Team stellte fest, dass das Ausmaß der Asymmetrie beim Menschen und bei den meisten Menschenaffen ungefähr gleich war. Nur Schimpansen waren im Durchschnitt weniger asymmetrisch als Menschen, Gorillas und Orang-Utans.

Darüber hinaus untersuchten die Wissenschafter*innen auch das räumliche Muster der Asymmetrie und konnten zeigen, dass nicht nur Menschen, sondern auch Schimpansen, Gorillas und Orang-Utans das gleiche durchschnittliche Asymmetriemuster aufwiesen, das zuvor als typisch menschlich beschrieben wurde: der linke Hinterhauptlappen, der rechte Vorderhauptlappen sowie der rechte Pol des Schläfenlappens und der rechte Kleinhirnlappen ragten mehr hervor als die der anderen Seite.

Beim Menschen unterscheidet sich das Muster individuell

"Was uns noch mehr überraschte war, dass die Menschen in dieser Asymmetrie am wenigsten konsistent waren, mit viel individueller Variation um das am häufigsten vorkommende Muster", sagt Philipp Mitteröcker von der Universität Wien.

Die Autor*innen interpretieren das als Zeichen von zunehmender funktioneller und entwicklungsbedingter Modularisierung des menschlichen Gehirns.

Beispielsweise hängt die Asymmetrie von Hinterhauptlappen und Kleinhirn beim Menschen weniger zusammen als bei Menschenaffen.

Dieser Befund ist interessant, da sich das Kleinhirn des Menschen während der Evolution dramatisch verändert hat. Infolgedessen könnte die lokale Asymmetrie des Kleinhirns etwas vom globalen Muster der Asymmetrie abgekoppelt sein.

Publikation

Simon Neubauer, Philipp Gunz, Nadia A. Scott, Jean-Jacques Hublin, Philipp Mitteroecker. "Evolution of brain lateralization: a shared hominid pattern of endocranial asymmetry is much more variable in humans than in great apes". Science Advances 6, eaax9935 (2020).
DOI: 10.1126/sciadv.aax9935


Weitere Meldungen

Weißbüschelaffen am Deutschen Primatenzentrum; Bildquelle: Manfred Eberle/DPZ

Eine gentechnisch unterstützte Reise ins Primatengehirn

Die Leibniz-Gemeinschaft fördert das Projekt PRIMADIS mit einer Million Euro
Weiterlesen

Elektronenmikroskopische Darstellung einer erregenden Synapse und Schema des Proteinnetzwerks zur Verankerung der AMPA-Rezeptoren in der Zellmembran.; Bildquelle: Bernd Fakler/Universität Freiburg

Noelin-Proteine zentral für Lernfähigkeit von Säugetiergehirnen

Deutsch-amerikanisches Forschungsteam um Freiburger Physiologen zeigt die fundamentale Bedeutung der Noelin-Proteine für die Plastizität von Nervenzellen auf
Weiterlesen

Bienen; Bildquelle: Christian Verhoeven (www.verhoevenfoto.de)

Fluoreszierendes Protein bringt Licht ins Bienengehirn

Ein internationales Team von Bienenforschenden unter Beteiligung der Heinrich-Heine-Universität Düsseldorf (HHU) hat einen Calcium-Sensor in eine Biene integriert
Weiterlesen

Tauben träumen im Schlaf; Bildquelle: RUB, Marquard

Hirnforschung: Träumen Tauben vom Fliegen?

Träumen galt lange Zeit als etwas, das den Schlaf des Menschen auszeichnet. Neue Erkenntnisse deuten jedoch darauf hin, dass Tauben im Schlaf möglicherweise Flugszenen erleben
Weiterlesen

Dr. Michael Heide; Bildquelle: Sascha Bubner/Deutsches Primatenzentrum GmbH

Das Gen, dem wir unser großes Gehirn verdanken

Hirnorganoide liefern Einblicke in die Evolution des menschlichen Gehirns
Weiterlesen

Ruhr-Universität Bochum

Schlaue Vögel denken smart und sparsam

Die Gehirnzellen von Vögeln benötigen nur etwa ein Drittel der Energie, die Säugetiere aufwenden müssen, um ihr Gehirn zu versorgen
Weiterlesen

Deutsche Wildtier Stiftung

Arbeitsgedächtnis von Vogel- und Affengehirn

Das Arbeitsgedächtnis ist die Fähigkeit des Gehirns, Informationen für kurze Zeit in einem abrufbaren Zustand zu halten und zu verarbeiten
Weiterlesen

Ein Schnitt durch den Haiwirbel zeigt Wachstumsringe, ähnlich denen in Baumstämmen.; Bildquelle: Daniel Erny/Universitätsklinikum Freiburg

Gehirn des weltweit ältesten Wirbeltieres untersucht

Detaillierte Untersuchungen des ältesten Gehirns können neue Erkenntnisse für altersbedingte Krankheiten des Gehirns ermöglichen. Studie im Fachmagazin Acta Neuropathologica erschienen
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen