Muskelentwicklung bei Fischen liefert Erkenntnisse über die Evolution der Landwirbeltiere

(13.11.2017) Evolutionsbiologen der Universität Jena identifizieren wichtigen Muskel bei ursprünglichen Fischen

Seit mehr als 140 Millionen Jahren schwimmt der Knochenhecht bereits durch die Gewässer unseres Planeten und noch immer birgt er Geheimnisse in sich.

Eines davon konnten Evolutionsbiologen der Friedrich-Schiller-Universität Jena jetzt lüften – und dabei wichtige Informationen darüber gewinnen, wie sich Fische zu Landwirbeltieren entwickelten.


Benjamin Naumann vor der Computerdarstellung eines Knochenfisches. Ihm ist es gemeinsam mit Kollegen gelungen, bei dieser Fischart erstmals den Cucullaris-Muskel richtig zu identifizieren.

Den Jenaer Wissenschaftlern ist es gelungen, bei dieser Fischart erstmals den Cucullaris-Muskel richtig zu identifizieren. Eine Untersuchung der Entwicklung dieses Muskels ergab viele Übereinstimmungen mit der Entwicklung des Cucullaris-Muskels der Landwirbeltiere.

Dies spricht für einen gemeinsamen evolutionären Ursprung des Muskels in beiden Tiergruppen, eine seit Mitte des 19. Jahrhunderts kontrovers diskutierte Annahme. Über ihre Forschungsergebnisse berichten die Wissenschaftler in einem Artikel für das Fachjournal „Evolution & Development“, der auch im renommierten Magazin „Nature“ als „Research Highlight“ Erwähnung findet.

„Wir haben den Cucullaris-Muskel des Knochenhechts genau bestimmen können und dabei einen über hundert Jahre alten Fehler korrigiert, denn bei früheren Untersuchungen war ein anderer Muskel so bezeichnet worden“, berichtet Benjamin Naumann von der Universität Jena.

Von Interesse für Evolutionsbiologen ist der Muskel, der Kopf und Schultergürtel miteinander verbindet, vor allem deswegen, weil er sowohl bei ursprünglichen Fischen als auch bei Säugetieren vorkommt, sich seine Funktion während der Evolution aber erheblich verändert hat.

„Bei Fischen sitzt der Kopf direkt am Schultergürtel, weswegen sich der Kopf nicht unabhängig vom Rumpf bewegen kann und auch nicht muss, da sich das Tier im dreidimensionalen Raum in alle Richtungen bewegen kann.

Der Cucullaris-Muskel dient also in erster Linie zur Stabilisierung und bedingt kleinere Bewegungen“, erklärt Prof. Dr. Lennart Olsson von der Uni Jena.

Diese Verbindung habe sich bei den ersten Landwirbeltieren dann gelöst – sie bildeten einen Hals, was eine erhöhte Beweglichkeit des Kopfes unabhängig vom Rumpf ermöglichte. Der Muskel, der beim Menschen Trapezmuskel heißt, gewinne an Bedeutung.

Übereinstimmung zwischen Säugetier und Fisch

Erst dank der Jenaer Wissenschaftler ist jetzt klar, dass der Muskel auch beim Knochenhecht schon an dieser Nahtstelle zwischen Rumpf und Kopf sitzt.

Bisher war man fälschlicherweise von einem anderen in der Nähe der Kiemen ausgegangen. Benjamin Naumann nutzte für seine Untersuchungen allerdings auch wesentlich modernere Methoden.

So forschte er, gemeinsam mit den Zoologen Peter Warth und Peter Konstantinidis, einen Monat lang am Virginia Institute of Marine Science in den USA, wo der Fisch, der im Übrigen nichts mit dem in Europa vorkommenden Hecht zu tun hat, heimisch ist.

Die Jenaer Wissenschaftler färbten die sich entwickelnde Muskulatur in Embryonen und Larven dieser Fische mit Antikörpern gegen Muskelproteine. Diese lagern sich an Proteine in den Muskeln an und werden mit fluoreszierenden Farbstoffen unter dem Lasermikroskop sichtbar gemacht.

„Die Position des Cucullaris-Muskels ist deshalb wichtig, weil sie uns verrät, dass er sich genauso bildet wie zum Beispiel beim Säugetier – und zwar vom Kopf zum Rumpf“, erklärt Naumann.

„Die Entwicklungsbiologie zeigt uns hier also eine Homologie, einen gemeinsamen evolutionären Ursprung dieses Muskels bei Fischen und Säugetieren auf.“

Außerdem wissen die Forscher nun, dass sich der Muskel sehr spät bildet, was auf das gleiche molekulare Entwicklungsprogramm in beiden Gruppen hindeutet.

Denn Wirbeltiere entwickeln ihre Kopf- und Rumpfmuskulatur aus unterschiedlichen embryonalen Anlagen und unter Verwendung unterschiedlicher genetischer Programme.

Bestimmte Gene initiieren in der embryonalen Phase zunächst die Bildung der Rumpfmuskulatur und blockieren gleichzeitig, dass sich Muskeln im Kopf bilden.

Die in den Rumpf eingewanderten Zellen des späteren Cucullaris-Muskels sind zu diesem Zeitpunkt noch undifferenziert, teilen sich aber während dieser Blockade.

Das sorgt für mehr Material und der Muskel kann größer werden, vermuten die Wissenschaftler. Erst ganz zum Schluss schlägt er die Brücke zwischen Kopf und Rumpf.

Publikation

Benjamin Naumann et al.: „The development of the cucullaris muscle and the branchial musculature in the Longnose Gar, (Lepisosteus osseus, Lepisosteiformes, Actinopterygii) and its implications for the evolution and development of the head/trunk interface in vertebrates“, Evolution & Development, 2017; DOI: 10.1111/ede.12239


Artikel kommentieren

Weitere Meldungen

Moskitofischweibchen wird von einem Männchen in typischer Manier verfolgt. Das Geschlechtsorgan der Männchen, das sogenannte Gonopodium, ist bereits ausgestreckt und zum 'Angriff' bereit. Es schwimmt von unten an das Weibchen heran, um; Bildquelle: fishesofaustralia.net.au

Fisch-Weibchen bevorzugen mittelmäßig aktive Lover

Viel Sex ist in der Evolution nicht immer von Vorteil. Moskitofisch-Weibchen schwimmen ungestümen Lovern aus dem Weg. Diese lassen ihnen kaum Zeit zum Fressen und verletzen sie häufiger im Genitalbereich
Weiterlesen

Viele Berufsfischer und Hobbyangler fangen am liebsten große Fische.; Bildquelle: IGB/Projekt Besatzfisch

Das Fischen der Großen hat genetische Konsequenzen

Die sogenannte größenselektive Fischerei kann Computermodellen zufolge in wenigen Generationen das Wachstumspotenzial der überlebenden Fische reduzieren und ihr Verhalten verändern
Weiterlesen

Universität Konstanz

Die Evolution des Seepferdchens

Ein internationales Kooperationsprojekt mit Beteiligung Konstanzer Evolutionsbiologen und Genomforscher hat die kompletten Erbanlagen des Seepferdchens sequenziert und grundlegende Mechanismen der Evolution erforscht
Weiterlesen

Universität Bern

Im Bodensee kann man zuschauen, wie eine neue Art entsteht

Manchmal geht Evolution viel schneller als wir denken. Genetische Analysen ermöglichen es, sehr frühe Stadien der Artbildung zu erkennen und Artbildungsprozesse besser zu verstehen
Weiterlesen

Stichlingsmännchen aus dem Bodensee (unten) und einem Zufluss (oben). Gut erkennbar: die unterschiedlich starken Knochenplatten entlang des Körpers, die bei den Flussstichlingen reduziert sind.; Bildquelle: Universität Basel, Marius Rösti

Bodensee-Stichlinge: Neues Licht auf die Evolution ähnlicher Arten

Bei ähnlichen, aber geografisch voneinander getrennten Populationen geht man grundsätzlich davon aus, dass sie durch eine unabhängige Anpassung an vergleichbare Umgebungen entstanden sind
Weiterlesen

Die kleinen Fische der Art Poecilia mexicana sind ein Beleg für eine große Theorie; Bildquelle: Pfenninger

Nachweis für Kontingenztheorie an Fischen erbracht

Wissenschaftler des Senckenberg Biodiversität und Klima Forschungszentrum in Frankfurt haben einen weiteren Beweis für die Evolutionstheorie der Kontingenz erbracht
Weiterlesen

Zebrafisch-Pärchen am Berliner Leibniz-Institut für Gewässerökologie und Binnenfischerei; Bildquelle: Eva-Maria Cyrus

Größenselektive Fischerei bevorzugt das Überleben von kleinen, scheuen Fischen

Durch die sogenannte fischereiliche Evolution passen sich die Bestände an. In die Röhre gucken Fischer und Angler, die immer kleinere Fische erbeuten
Weiterlesen

240 Millionen Jahre altes Fossil des urtümlichen Fisches Saurichtys curionii aus dem UNESCO Welterbe Monte San Giorgio im Tessin; Bildquelle: UZH

Neues Evolutionsmuster für lang gestreckte Fische

Der längliche, aalförmige Körper einiger heutiger Fische hat sich auf verschiedene Arten ausgebildet. Eine neue Variante zur Streckung der Körperachse entdeckten Paläontologen der Universität Zürich an einem urtümlichen Fisch aus dem Südtessin
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen





[X]
Hinweis zur Nutzung von Cookies

Diese Website nutzt Cookies zur Bereitstellung von personalisierten Inhalten, Anzeigen, Inhalten von sozialen Medien und zur Analyse des Benutzerverhaltens. Die mit Hilfe von Cookies gewonnenen Daten werden von uns selbst sowie von uns beauftragten Partnern in den Bereichen soziale Medien, Online-Werbung und Website-Analyse genutzt. Durch den Besuch unserer Website erklären Sie sich damit einverstanden, dass wir Cookies setzen.

Mit der weiteren Nutzung dieser Website erklären Sie sich mit der Verwendung von Cookies einverstanden. Mehr erfahren...