Interne Kopplung der Ohren ermöglicht Tieren das Richtungshören

(19.02.2016) Menschen nutzen den Zeitunterschied, mit dem ein Schallsignal an beiden Ohren ankommt, zur Richtungsbestimmung. Bei Fröschen, Echsen oder Vögeln ist der Ohrabstand hierfür zu gering. Sie besitzen jedoch einen Verbindungsgang zwischen beiden Trommelfellen, in dem sich innere und äußere Schallwellen überlagern.

Mit einem universellen mathematischen Modell zeigen Forscher der Technischen Universität München (TUM) nun erstmals, wie in diesem „inneren Ohr“ neue Signale entstehen, die die Tiere zur Ortung nutzen.

Sei es eine Bedrohung, die sich anschleicht oder eine Beute, die es im Dunkeln zu finden gilt – die genaue Position einer Geräuschquelle bestimmen zu können, ist im Tierreich von großer Bedeutung.

Fast alle Säugetiere, darunter auch der Mensch, lokalisieren eine Geräuschquelle horizontal mit Hilfe der zeitlichen Verzögerung mit der das Schallsignal an beiden Ohren ankommt. Aus dem Zeitunterschied berechnet das Gehirn die Richtung, aus der das Geräusch kam.


Ein luftgefüllter Kanal verbindet die Ohren der Eidechse im Inneren und ermöglicht ihr das Richtungshören

Frösche, viele Reptilien und auch Vögel haben diese Möglichkeit nicht, da ihr Ohrabstand oft nur wenige Zentimeter beträgt.

Der Zeitunterschied ist daher so gering, dass das Gehirn ihn nicht mehr verarbeiten kann. Um diesen Nachteil auszugleichen, haben diese Tiere ein einfaches und zugleich sehr effizientes System entwickelt: Ein luftgefüllter Hohlraum verbindet die Trommelfelle beider Ohren.

Dieser quer durch den Schädel hindurch verlaufende Hohlraum sorgt für eine Kopplung der beiden Trommelfelle. Die Wissenschaftler sprechen hierbei von „intern gekoppelten Ohren“ (englisch „internally coupled ears“, ICE). Dieser „Tunnel im Kopf“ wird gut sichtbar, wenn man beispielsweise einem Gecko in eines seiner Ohren hineinleuchtet: Der Lichtstrahl tritt dann aus dem anderen Ohr wieder aus.

Anders als bei uns Menschen nehmen die Tiere damit nicht nur die von außen auftreffenden Signale wahr, sondern auch eine Überlagerung der äußeren Schallwellen mit jenen, die im Inneren des Verbindungsganges durch die Kopplung mit der anderen Seite entstehen.

Zwar haben Wissenschaftler durch Experimente herausgefunden, dass die Tiere dieses resultierende Signal zur Richtungsbestimmung nutzen. Was jedoch in den gekoppelten Ohren genau vor sich geht, blieb bislang ein Rätsel.

Ein Modell für 15.000 Arten

Nun ist es Wissenschaftlern um Leo van Hemmen, Professor für Theoretische Biophysik an der Technischen Universität München (TUM), erstmals gelungen, ein universell anwendbares mathematisches Modell zu entwickeln, das genau beschreibt, wie sich die Schallwellen in intern gekoppelten Ohren ausbreiten und welche Hinweise auf die Richtung des Signals dabei entstehen.

„Unser Modell lässt sich auf alle Tiere mit diesem Hörsystem anwenden, auch wenn die Hohlräume zwischen den Trommelfellen bei den unterschiedlichen Spezies sehr verschieden aussehen“, erklärt van Hemmen.

„Hierdurch verstehen wir nun, was genau im Inneren der Ohren dieser Tiere vor sich geht, und können Experimente bei ganz unterschiedlichen Tierarten erklären und vorhersagen.“ Insgesamt besitzen mehr als 15.000 Arten intern gekoppelte Ohren – das ist mehr als die Hälfte aller landlebenden Wirbeltiere.

Zusammenspiel von externen und internen Signalen

Mit Hilfe ihres Modells fanden van Hemmen und sein Team heraus, dass die Tiere sogar zwei verschiedene Methoden zum Hören mit intern gekoppelten Ohren entwickelt haben. Sie treten in unterschiedlichen Frequenzbereichen auf und ergänzen sich gegenseitig.

Bei Tönen mit einer Frequenz unterhalb der Grundfrequenz des Trommelfells wird der Zeitunterschied, der durch die Überlagerung der äußeren und der inneren Signale entsteht, bis zu fünffach verstärkt. Das reicht aus, um das Geräusch orten zu können.

Bei höheren Frequenzen kann die Zeitdifferenz nicht mehr genutzt werden. Hier kommt eine andere Eigenschaft des Signals zum Tragen: Der Unterschied in der Amplitude, also des Lautstärkepegels, mit dem das Signal an beiden Ohren wahrgenommen wird. „Diese Amplitudendifferenz entsteht allein durch die Kopplung der beiden Ohren“, erklärt van Hemmen. „Das war ein überraschendes Ergebnis.“

Die neuen Erkenntnisse über den Mechanismus und vor allem die Vorteile des Hörens mit intern gekoppelten Ohren sind auch für die Industrie interessant. So könnten vielleicht einmal Roboter mit solch einem Hörsystem ausgestattet werden. „Ich kann mir eine Anwendung in der Robotik gut vorstellen, da diese Art der Verstärkung keine Energie kostet“, meint van Hemmen. In Zukunft wollen die Wissenschaftler um van Hemmen ihr Modell zusammen mit experimentell arbeitenden Kollegen weiter verfeinern.

Publikation

A.P. Vedurmudi, J. Goulet, J. Christensen-Dalsgaard, B.A. Young, R. Williams, and J.L. van Hemmen, How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization, Physical Review Letters, 116, 028101 DOI: 10.1103/PhysRevLett.116.028101



Artikel kommentieren

Weitere Meldungen

Vetmeduni Vienna

Spezielle Magnetresonanztomographie zeigt, was Frösche hören

Eine aktuelle internationale Studie der Vetmeduni Vienna zeigt, dass die Bildgebungsmethode MEMRI (Mangan-verstärkte Magnetresonanztomographie) einen leistungsstarken Ansatz zur Untersuchung der Gehirnaktivität bei Fröschen bietet
Weiterlesen

Krokodile nutzen neuronale Karten, um die Richtung einer Schallquelle zu orten.; Bildquelle: Ruth M. Elsey/Rockefeller Wildlife Refuge in Louisiana

Krokodile benutzen genau wie Vögel neuronale Karten, um die Richtung von Geräuschen zu orten.

Das haben Dr. Lutz Kettler von der Technischen Universität München (TUM) und Prof. Catherine Carr von der University of Maryland in einer neuen Studie herausgefunden
Weiterlesen

Die Wissenschaftler bauten dreidimensionale "Standbilder" von Wasserwellen nach und ließen Fledermäuse im Dunkeln die flache Scheibe in der Mitte von jeweils einer der anderen Scheiben unterscheiden.; Bildquelle: Klemen Koselj

Fledermäuse hören in 3D

Die Echoortung von Fledermäusen verwendet trotz der unterschiedlichen Anatomie von Augen und Ohren Informationen über dreidimensionale Raumstruktur, wie sie auch der Sehsinn verwendet
Weiterlesen

Mehdi Behroozi, Felix Ströckens und Xavier Helluy (von links) konnten zum ersten Mal Krokodilgehirne mit Kernspintomografie untersuchen.; Bildquelle: RUB, Marquard

Was passiert im Gehirn eines Krokodils, wenn es komplexe Klänge hört?

Diese Frage konnte ein internationales Forscherteam unter der Leitung von Dr. Felix Ströckens vom Lehrstuhl für Biopsychologie der Ruhr-Universität Bochum (RUB) beantworten
Weiterlesen

Große Hufeisennasen sind auf den Fang flatternder Insekten spezialisiert.; Bildquelle: MerlinTuttle.org

Wie Fledermäuse verschiedene Hörereignisse gleichzeitig auswerten

Fledermäuse können nicht nur die Information der Echos ihrer Ultraschalllaute zur Beutesuche nutzen, sondern gleichzeitig auch akustische Signale, die von der Beute selbst ausgehen
Weiterlesen

Die tropische Laubheuschrecke Mecopoda elongata; Bildquelle: Wolfgang Gessl, Zoologie/Uni Graz

Grazer Zoologen entdecken, wie Nervenzellen von Heuschrecken arteigene Gesänge herausfiltern

Die Schwierigkeit, in lautem Stimmengewirr einem einzelnen Gespräch zu folgen, ist als Cocktail-Party-Problem bekannt. Viele Tiere stehen vor einer ähnlichen Situation. So müssen zum Beispiel Heuschrecken im tropischen Regenwald im Lärm anderer Arten die Gesänge ihrer eigenen Männchen hören
Weiterlesen

Vögel mit seitlich stehenden Augen, z.B. Amseln, können die Höhenposition von Schallquellen abhängig von der Lautstärke unterscheiden. Dagegen sind Schleiereulen auf frontale Geräusche spezialisiert; Bildquelle: Schnyder HA, Vanderelst D, Bartenstein S, Firzlaff U, Luksch H (2014)

Warum Vögel keine Ohrmuscheln brauchen

Im Gegensatz zu Säugetieren haben Vögel keine Außenohren. Der äußere Teil der Ohren hat eine wichtige Funktion: Tiere können damit Laute identifizieren, die aus unterschiedlichen Höhen kommen
Weiterlesen


Wissenschaft


Universitäten


Neuerscheinungen

24.05.